• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrolytically stable Titanium-45

Severin, G. W., Fonslet, J., Jensen, A. I., Zhuravlev, F. 19 May 2015 (has links) (PDF)
Introduction Titanium-45, a candidate PET isotope, is under-employed largely because of the challenging aqueous chemistry of Ti(IV). The propensity for hydrolysis of Ti(IV) compounds makes radio-labeling difficult and excludes 45Ti from use in bio-conjugate chemistry. This is unfortunate because the physical characteristics are extremely desirable: 45Ti has a 3 hour half-life, a positron branching ratio of 85 %, a low Eβmax of 1.04 MeV, and negligible secondary gamma emission. In terms of isotope production, 45Ti is transmuted from naturally mono-isotopic 45Sc by low energy proton irradiation. The high cross-section and production rates on an unenriched metal foil target contribute to make 45Ti an ideal PET radionuclide. In order to bring 45Ti to even a preclinical plat-form, the hydrolytic instability of aqueous Ti(IV) needs to be addressed. Recently, the groups of Edit Tshuva (Hebrew University of Jerusalem) and Thomas Huhn (University of Konstanz) have synthesized several stable Ti(IV) compounds based upon the salan ligand [1,2]. Additionally, these compounds have shown heightened cyto-toxicity against HT-29 (human colorectal cancer) cells, amongst others, as compared to traditional metal-based chemotherapeutics such as cisplatin. The aim of our work has been to produce the radioactive analogue of one of these Ti(IV)-salan compounds, Ti-salan-dipic [2], which has hydro-lytic stability on the order of weeks. Not only will this allow us to shed some light on the still un-known mechanism of antiproliferative action of titanium-based chemotherapeutics, but it will also make progress toward bioconjugate 45Ti PET tracers. In the current abstract, we present some of the methods we are using to separate 45Ti from irradiated Sc, and subsequent labeling conditions. Material and Methods 45Ti was produced by proton irradiation of 250μm scandium foils at currents ranging from 10-20μA on a GE PETTrace. In order to increase production rate in the thin foil, an 800μm aluminum degrader was used to take the proton energy down from the nominal 16 MeV. The scandium was cooled by contact to a water-cooled silver plate. The activated foil was dissolved in 4M HCl, dried under argon at 120 oC, and taken back up in 12M HCl. Here, four (i-iv below) different approaches to removing the Ti from the Sc and labeling were taken with varying success. Briefly: i. 45Ti was separated on hydroxamate resin, as presented by K. Gagnon [3], only at 12M acid concentration followed by on-column radiolabeling. ii. 45Ti was extracted into 1-octanol [4], stripped with 12M HCl, and used directly for labeling from the organic phase. iii. 45Ti was trapped on a C-18 cartridge that had been pre-loaded with 1-octanol, similar to ion-pairing, and eluted with isopropanol. iv. 45Ti was extracted onto a polystyrene based 1,3 diol resin (RAPP polymers) and labeling commenced on the column. Radiolabeling was slightly different in each condition, but in general the salan and dipic ligands were added to the 45Ti in pyridine and reacted at elevated temperature (60–100 oC) for several (10–30) minutes. Reaction progression and radiochemical purity were assessed with silica TLC in chloroform : ethyl acetate (1 : 1). Results and Conclusion The trap, release, and yields for the four methods listed above are shown in TABLE 1. The best result was with the 1,3 diol resin which had the added advantage of reacting on-column. Further optimization is underway including a test of a solid supported 1,2 diol, and preclinical imaging with HT-29 xenografts. We conclude that hydrolytically stable 45Ti com-pounds can be synthesized in high yield, and hope that this advances the radiochemistry and use of 45Ti toward more widespread applications.
2

Titanium-45 as a candidate for PET imaging: production, processing & applications

Price, R. I., Sheil, R. W., Scharli, R. K., Chan, S., Gibbons, P., Jeffery, C., Morandeau, L. 19 May 2015 (has links) (PDF)
Introduction The 80kD glycoprotein transferrin (TF) and its related receptor (TFR1) play a major role in the recruitment by cancer cells of factors for their multiplication, adhesion, invasion and metastatic potential. Though primarily designed to bind iron and then be internalised into cells with its receptor, TF can also bind most transition metals such as Co, Cr, Mn, Zr, Ni, Cu, V, In & Ga. Under certain conditions TF binds Ti (IV) even more tightly than it does Fe and that this occurs at the N-lobe (as distinct from C) of apoTF. Further, under physiological conditions the species Fe(C)Ti(N)-TF may provide the route for Ti entry into cells via TFR1 (1). Thus, the radiometal PET reporter isotope 45Ti with an ‘intermediate’ (~hrs) half-life suited to tracking cell-focused biological mechanisms is an attractive option for elucidating cellular mechanisms involving TF binding and internalisation, at least in (preclinical) animal models. 45Ti (T½ = 3.08 hr; + branching ratio = 85 %; mean β+ energy = 439keV, no significant dose-conferring non-511keV γ-emissions) was produced using the reaction 45Sc(p,n)45Ti by irradiating (monoisotopic) scandium discs with an energy-degraded proton beam produced by an 18MeV isochronous medical cyclotron. Separation and purification was achieved with an hydroxylamine hydrochloride functionalised resin. Comparative microPET imaging was performed in an immunodeficient mouse model, measuring biodistributions of the radiolabels 45Ti-oxalate and 45Ti-human-TF (45Ti-h-TF), out to 6hr post-injection. Materials and Methods High purity 15mm diameter scandium disc foils (99.5%, Goodfellow, UK) each thickness 0.100 ± 0.005 mm (55 mg) were loaded into an in-house constructed solid-targetry system mounted on a 300mm external beam line utilising helium-gas and chilled water to cool the target body (2). The proton beam was degraded to 11.7 MeV using a graphite disc integrated into the graphite collimator. This energy abolishes the competing ‘contaminant’ reactions 45Sc(p,n+p)44Sc and 45Sc(p,2n)44Ti. Beam current was measured using the well documented 65Cu(p,n)65Zn reaction. Calculations showed that the chosen energy is close to the optimal primary energy (~12 MeV) for maximising the (thin-target) yield from a 0.100 mm thick target. For separation of Ti from the Sc target two methods were examined; (i) ion exchange column separation using 2000 mg AG 50W-X8 resin conditioned with 10mL 9M HCl. Disc is dissolved in 1 mL of 9M HCl, which at completion of reaction is pipetted into column. Successive 1 mL volumes of 9M HCl are added, and subsequent elutions collected. (ii) Following Gagnon et al., (3) a method employing hydroxylamine hydro-chloride functionalised resin (’hydroxamate method’) was applied, similar to its use in our hands for purification and separation of 89Zr (2) following its original description for 89Zr by Holland et al., (4). Disc dissolved in 2mL 6M HCl, then diluted to 2M. Elute through column to waste fraction 1 (w1 – see FIG. 1). Then elute 6 mL of 2M HCl through column to w2, followed by 6 mL of traceSELECT H2O to w3. Finally, elute Ti into successive 1 mL product fractions (p1, 2 etc.) using 5 mL of 1M oxalic acid. This procedure takes approximate 1 hr. 45Ti in elution vials was measured using γ-spectroscopy. Sc in the same vials was determined later using ICP-MS. Results A typical production run using a beam current of 40 μA for 60min on a 0.100mm-thick disc produced an activity of 1.83 GBq. Radionuclidic analysis of an irradiated disc using calibrated cryo-HPGe γ-spectroscopy revealed T½ = 2.97–3.19 hr (95% CI) for 45Ti, and with contaminant 44Sc < 0.19 %, with no other isotopes detected. Despite systematic adjustments to column conditions satisfactory chemical separation was not achieved using the ion exchange column method (i), despite previous reports of its success (5). Typical results of separation using the successful hydroxamate method (ii) are shown on the FIGURE 1. It is seen that significant portion of 45Ti is lost in the initial washing steps leading to waste collection. N = 4 replicate experiments showed a variation (SD) of 10 % of the mean in each elu-tion fraction. Subsequent ICP-MS of the same elutions for (cold) Sc showed approximately 80 % by mass appeared in w1 and 20 % in w2, with negligible total mass (total fraction ~1/6000) of Sc in product (p1–4) vials. However, the FIG. 1 shows that a total of only 30% of the original activity of 45Ti (corrected to EOB) is available in the product vials, with the vial of highest specific activity (p1) containing 14 %. However, using a stack of 2×0.100mm thick Sc discs as a target yields isotope of adequate specific activity with-out need for concentration, for subsequent labelling and small-animal imaging purposes. In a ‘proof-of-principle’ experiment, two groups of healthy Balb/c-nu/nu female adult mice were administered with 45Ti radiotracers. The first group (N = 3) received approximately 20 MBq IP of 45Ti-oxalate buffered to pH = 7.0, and under-went microPET/CT imaging (Super Argus PET, Sedecal, Spain) out to 6hr post-injection, plus biodistribution analysis of radioactivity by dis-section at sacrifice (6hr). The second group (N = 3) received approximately 20 MBq IP of 45Ti-h-TF and were also studied to 6hr post-injection, followed by radioactive analysis after dissection at sacrifice. Organ and tissue biodistributions of the two groups at 6hr were similar but with 45Ti-oxalate showing slightly greater affinity for bone. Biodistribution by dissection results broadly confirmed the findings from PET images. However, TLC results suggested that similarity of radiolabel biodistributions of the two groups may be due to contamination of the TF radiolabel with non-conjugated Ti at time of injection. An alternative explanation is dechelation in vivo of 45Ti from 45Ti-h-TF. Conclusion Despite significant loss of 45Ti to the waste fractions of the separation process (total 53 %, corrected to EOB), 45Ti of acceptable specific activity and high radionuclidic purity has been produced from the reaction 45Sc(p,n)45Ti, with separation and purification of the product by hydroxamate column chemistry, confirming an earlier report. Though microPET in vivo imaging using 45Ti-based radiolabels was shown to be feasible, the similarity in the results for the label 45Ti-h-TF compared with ‘raw’ 45Ti-oxalate suggests further investigations. These may include a direct comparison of in vivo 45Ti-h-TF small-animal imaging plus post-dissection biodistribution with the same procedures using 89Zr labelled h-apotransferrin (6).
3

Titanium-45 as a candidate for PET imaging: production, processing & applications

Price, R. I., Sheil, R. W., Scharli, R. K., Chan, S., Gibbons, P., Jeffery, C., Morandeau, L. January 2015 (has links)
Introduction The 80kD glycoprotein transferrin (TF) and its related receptor (TFR1) play a major role in the recruitment by cancer cells of factors for their multiplication, adhesion, invasion and metastatic potential. Though primarily designed to bind iron and then be internalised into cells with its receptor, TF can also bind most transition metals such as Co, Cr, Mn, Zr, Ni, Cu, V, In & Ga. Under certain conditions TF binds Ti (IV) even more tightly than it does Fe and that this occurs at the N-lobe (as distinct from C) of apoTF. Further, under physiological conditions the species Fe(C)Ti(N)-TF may provide the route for Ti entry into cells via TFR1 (1). Thus, the radiometal PET reporter isotope 45Ti with an ‘intermediate’ (~hrs) half-life suited to tracking cell-focused biological mechanisms is an attractive option for elucidating cellular mechanisms involving TF binding and internalisation, at least in (preclinical) animal models. 45Ti (T½ = 3.08 hr; + branching ratio = 85 %; mean β+ energy = 439keV, no significant dose-conferring non-511keV γ-emissions) was produced using the reaction 45Sc(p,n)45Ti by irradiating (monoisotopic) scandium discs with an energy-degraded proton beam produced by an 18MeV isochronous medical cyclotron. Separation and purification was achieved with an hydroxylamine hydrochloride functionalised resin. Comparative microPET imaging was performed in an immunodeficient mouse model, measuring biodistributions of the radiolabels 45Ti-oxalate and 45Ti-human-TF (45Ti-h-TF), out to 6hr post-injection. Materials and Methods High purity 15mm diameter scandium disc foils (99.5%, Goodfellow, UK) each thickness 0.100 ± 0.005 mm (55 mg) were loaded into an in-house constructed solid-targetry system mounted on a 300mm external beam line utilising helium-gas and chilled water to cool the target body (2). The proton beam was degraded to 11.7 MeV using a graphite disc integrated into the graphite collimator. This energy abolishes the competing ‘contaminant’ reactions 45Sc(p,n+p)44Sc and 45Sc(p,2n)44Ti. Beam current was measured using the well documented 65Cu(p,n)65Zn reaction. Calculations showed that the chosen energy is close to the optimal primary energy (~12 MeV) for maximising the (thin-target) yield from a 0.100 mm thick target. For separation of Ti from the Sc target two methods were examined; (i) ion exchange column separation using 2000 mg AG 50W-X8 resin conditioned with 10mL 9M HCl. Disc is dissolved in 1 mL of 9M HCl, which at completion of reaction is pipetted into column. Successive 1 mL volumes of 9M HCl are added, and subsequent elutions collected. (ii) Following Gagnon et al., (3) a method employing hydroxylamine hydro-chloride functionalised resin (’hydroxamate method’) was applied, similar to its use in our hands for purification and separation of 89Zr (2) following its original description for 89Zr by Holland et al., (4). Disc dissolved in 2mL 6M HCl, then diluted to 2M. Elute through column to waste fraction 1 (w1 – see FIG. 1). Then elute 6 mL of 2M HCl through column to w2, followed by 6 mL of traceSELECT H2O to w3. Finally, elute Ti into successive 1 mL product fractions (p1, 2 etc.) using 5 mL of 1M oxalic acid. This procedure takes approximate 1 hr. 45Ti in elution vials was measured using γ-spectroscopy. Sc in the same vials was determined later using ICP-MS. Results A typical production run using a beam current of 40 μA for 60min on a 0.100mm-thick disc produced an activity of 1.83 GBq. Radionuclidic analysis of an irradiated disc using calibrated cryo-HPGe γ-spectroscopy revealed T½ = 2.97–3.19 hr (95% CI) for 45Ti, and with contaminant 44Sc < 0.19 %, with no other isotopes detected. Despite systematic adjustments to column conditions satisfactory chemical separation was not achieved using the ion exchange column method (i), despite previous reports of its success (5). Typical results of separation using the successful hydroxamate method (ii) are shown on the FIGURE 1. It is seen that significant portion of 45Ti is lost in the initial washing steps leading to waste collection. N = 4 replicate experiments showed a variation (SD) of 10 % of the mean in each elu-tion fraction. Subsequent ICP-MS of the same elutions for (cold) Sc showed approximately 80 % by mass appeared in w1 and 20 % in w2, with negligible total mass (total fraction ~1/6000) of Sc in product (p1–4) vials. However, the FIG. 1 shows that a total of only 30% of the original activity of 45Ti (corrected to EOB) is available in the product vials, with the vial of highest specific activity (p1) containing 14 %. However, using a stack of 2×0.100mm thick Sc discs as a target yields isotope of adequate specific activity with-out need for concentration, for subsequent labelling and small-animal imaging purposes. In a ‘proof-of-principle’ experiment, two groups of healthy Balb/c-nu/nu female adult mice were administered with 45Ti radiotracers. The first group (N = 3) received approximately 20 MBq IP of 45Ti-oxalate buffered to pH = 7.0, and under-went microPET/CT imaging (Super Argus PET, Sedecal, Spain) out to 6hr post-injection, plus biodistribution analysis of radioactivity by dis-section at sacrifice (6hr). The second group (N = 3) received approximately 20 MBq IP of 45Ti-h-TF and were also studied to 6hr post-injection, followed by radioactive analysis after dissection at sacrifice. Organ and tissue biodistributions of the two groups at 6hr were similar but with 45Ti-oxalate showing slightly greater affinity for bone. Biodistribution by dissection results broadly confirmed the findings from PET images. However, TLC results suggested that similarity of radiolabel biodistributions of the two groups may be due to contamination of the TF radiolabel with non-conjugated Ti at time of injection. An alternative explanation is dechelation in vivo of 45Ti from 45Ti-h-TF. Conclusion Despite significant loss of 45Ti to the waste fractions of the separation process (total 53 %, corrected to EOB), 45Ti of acceptable specific activity and high radionuclidic purity has been produced from the reaction 45Sc(p,n)45Ti, with separation and purification of the product by hydroxamate column chemistry, confirming an earlier report. Though microPET in vivo imaging using 45Ti-based radiolabels was shown to be feasible, the similarity in the results for the label 45Ti-h-TF compared with ‘raw’ 45Ti-oxalate suggests further investigations. These may include a direct comparison of in vivo 45Ti-h-TF small-animal imaging plus post-dissection biodistribution with the same procedures using 89Zr labelled h-apotransferrin (6).
4

Hydrolytically stable Titanium-45

Severin, G. W., Fonslet, J., Jensen, A. I., Zhuravlev, F. January 2015 (has links)
Introduction Titanium-45, a candidate PET isotope, is under-employed largely because of the challenging aqueous chemistry of Ti(IV). The propensity for hydrolysis of Ti(IV) compounds makes radio-labeling difficult and excludes 45Ti from use in bio-conjugate chemistry. This is unfortunate because the physical characteristics are extremely desirable: 45Ti has a 3 hour half-life, a positron branching ratio of 85 %, a low Eβmax of 1.04 MeV, and negligible secondary gamma emission. In terms of isotope production, 45Ti is transmuted from naturally mono-isotopic 45Sc by low energy proton irradiation. The high cross-section and production rates on an unenriched metal foil target contribute to make 45Ti an ideal PET radionuclide. In order to bring 45Ti to even a preclinical plat-form, the hydrolytic instability of aqueous Ti(IV) needs to be addressed. Recently, the groups of Edit Tshuva (Hebrew University of Jerusalem) and Thomas Huhn (University of Konstanz) have synthesized several stable Ti(IV) compounds based upon the salan ligand [1,2]. Additionally, these compounds have shown heightened cyto-toxicity against HT-29 (human colorectal cancer) cells, amongst others, as compared to traditional metal-based chemotherapeutics such as cisplatin. The aim of our work has been to produce the radioactive analogue of one of these Ti(IV)-salan compounds, Ti-salan-dipic [2], which has hydro-lytic stability on the order of weeks. Not only will this allow us to shed some light on the still un-known mechanism of antiproliferative action of titanium-based chemotherapeutics, but it will also make progress toward bioconjugate 45Ti PET tracers. In the current abstract, we present some of the methods we are using to separate 45Ti from irradiated Sc, and subsequent labeling conditions. Material and Methods 45Ti was produced by proton irradiation of 250μm scandium foils at currents ranging from 10-20μA on a GE PETTrace. In order to increase production rate in the thin foil, an 800μm aluminum degrader was used to take the proton energy down from the nominal 16 MeV. The scandium was cooled by contact to a water-cooled silver plate. The activated foil was dissolved in 4M HCl, dried under argon at 120 oC, and taken back up in 12M HCl. Here, four (i-iv below) different approaches to removing the Ti from the Sc and labeling were taken with varying success. Briefly: i. 45Ti was separated on hydroxamate resin, as presented by K. Gagnon [3], only at 12M acid concentration followed by on-column radiolabeling. ii. 45Ti was extracted into 1-octanol [4], stripped with 12M HCl, and used directly for labeling from the organic phase. iii. 45Ti was trapped on a C-18 cartridge that had been pre-loaded with 1-octanol, similar to ion-pairing, and eluted with isopropanol. iv. 45Ti was extracted onto a polystyrene based 1,3 diol resin (RAPP polymers) and labeling commenced on the column. Radiolabeling was slightly different in each condition, but in general the salan and dipic ligands were added to the 45Ti in pyridine and reacted at elevated temperature (60–100 oC) for several (10–30) minutes. Reaction progression and radiochemical purity were assessed with silica TLC in chloroform : ethyl acetate (1 : 1). Results and Conclusion The trap, release, and yields for the four methods listed above are shown in TABLE 1. The best result was with the 1,3 diol resin which had the added advantage of reacting on-column. Further optimization is underway including a test of a solid supported 1,2 diol, and preclinical imaging with HT-29 xenografts. We conclude that hydrolytically stable 45Ti com-pounds can be synthesized in high yield, and hope that this advances the radiochemistry and use of 45Ti toward more widespread applications.

Page generated in 0.0784 seconds