• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 17
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 85
  • 55
  • 40
  • 39
  • 38
  • 20
  • 17
  • 17
  • 17
  • 10
  • 9
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design And Production Of Antireflection Coating For Ge, Znse And Zns In 8-12 Micrometer Wavelength Region

Ucer, Begum 01 January 2010 (has links) (PDF)
This thesis describes the works done during the design and deposition process of the antireflection coating for the materials commonly used as refractive optical elements in thermal imaging systems. These coatings are quite necessary to reduce reflection losses from the surface of the optics and stray light that directly affects the image quality. Germanium, zinc sulfide and zinc selenide were used as substrate material and their optical properties were investigated with infrared ellipsometry and FTIR. Antireflection coatings for each material operating in 8-12 &amp / #956 / m range were designed with Needle Synthesis Technique. In order to shorten the optimization time, commercial software / &ldquo / The Essential Macleod&rdquo / was used. In order to reduce the reflectance losses multilayer structure was used in the coating design, and zinc selenide and lead telluride were used as low and high index materials. In this study the necessary theoretical background and common deposition techniques are reviewed. Samples were produced using the magnetron sputtering. To optimize the v thicknesses of the deposited layers, growth period and rate was controlled. Thicknesses of the samples, following to the deposition were also measured by thickness profilometer. A 3-layer coating, PbTe/ZnSe/PbTe, on ZnS and 2-layer coating PbTe/ZnS on Ge having more than 90% transmittance in 9.7-10.3 &amp / #956 / m wavelength region have been successfully produced. Although, the measured range for 3 and 2- layer coating is narrower than the aimed one, it has been shown that, the method developed in this thesis would yield AR-coatings with broader spectral response if a system having better control on deposition parameters is used. For example, our design and optimization work has suggested that a 7-layer AR coating on germanium, with alternating high and low index layers is expected to give transmittance value greater than 93% in the studied wavelength region.
32

Effect Of Localized States On The Photocurrent In Amorphous Silicon Alloys

Bebek, Mehmet Bahadir 01 December 2009 (has links) (PDF)
Amorphous Silicon alloy thin films were deposited by plasma enhanced chemical vapor deposition technique. In order to make optoelectronic measurements, diode structures were fabricated by depositing transparent metal electrodes. Theoretical background of localized density of states in the mobility gap and photocurrent mechanisms has been revisited. In light of this, time of flight technique, using transient photocurrent, was utilized to determine mobility in extended states and characteristic energy of tail states in the film. The actual density of states (DOS) in the mobility gap of the deposited films was determined by using absorption coefficients obtained via constant photocurrent measurements. Finally, adverse effects of small Oxygen incorporation on mobility and DOS were observed.
33

Photoluminescence Properties Of Si Nanocrystals Embedded In Sio2 Matrix

Seyhan, Ayse 01 March 2010 (has links) (PDF)
This thesis examines the luminescence properties of nanoscale silicon (Si) by using spectroscopic techniques. Since the development of new optical devices requires understanding light emission mechanism optical spectroscopy has become more important tool in the analysis of these structures. In this thesis, Si nanocrystals embedded in SiO2 matrix will be studied. Photoluminescence (PL) and Time-resolved photoluminescence spectroscopy (TRPL) have been used to detect the light emission in UV-Vis-NIR range. Experiments have been performed in the temperature range 10-300 K. PL is sensitive to impurities and defects that affect materials quality and device performance. In this context, the role of defects in limiting the luminescence of Si nanocrystals and the removal of these defects by hydrogen passivation has been investigated. v TRPL was employed to determine the time evolution of photoluminescence as function of temperature. The decay time of the PL spectra was determined by a stretched exponential function and perfectly fitted to an expression based on three excitonic levels. Carrier lifetimes associated with these three levels were determined and compared with literature. Additionally, temporal variation of PL from free-standing Si nanoparticles is studied under a strong laser illumination. The observed bleaching behavior (time dependent emission intensity), which is reversible, have discussed in terms of exciton trapping at the interface between nanocrystal and the surrounding oxide layer. The results of this thesis will provide new insight on the understanding of light emission mechanism of Si nanocrytals.
34

Thickness Analysis Of Thin Films By Energy Dispersive X-ray Spectroscopy

Canli, Sedat 01 December 2010 (has links) (PDF)
EDS is a tool for quantitative and qualitative analysis of the materials. In electron microscopy, the energy of the electrons determines the depth of the region where the X-rays come from. By varying the energy of the electrons, the depth of the region where the X-rays come from can be changed. If a thin film is used as a specimen, different quantitative ratios of the elements for different electron energies can be obtained. Unique thickness of a specific film on a specific substrate gives unique energy-ratio diagram so the thickness of a thin film can be calculated by analyzing the fingerprints of the energy-ratio diagram of the EDS data obtained from the film.
35

Applications In Broadband Thz Spectroscopy Towards Material Studies

Turksen, Zeynep 01 January 2011 (has links) (PDF)
The purpose of this work was to construct and analyze a THz time domain spectroscopy (THz-TDS) system by using a nanojoule energy per pulse ultrafast laser (non-amplified ultrafast laser or oscillator) source and a non-linear optical generation method for THz generation. First a THz-TDS system, which uses photoconductive antenna (PCA) method for THz generation, was built to understand the working principles of these types of systems. This THz-TDS system which used PCA for generation and a 2mm thick &lt / 110&gt / ZnTe crystal for detection had a bandwidth up to 1 THz with a 1000:1 signal to noise ratio (S/N). Using this system, various materials were investigated to study the usefulness of the obtained bandwidth. Absorption coefficient and refractive indices of the sample materials were calculated. Results showed that the bandwidth of the system was not sufficient to obtain fingerprint properties of these materials. In order to improve the system, optical rectification method was used for THz generation. A different THz-TDS system was built with a 1mm thick &lt / 110&gt / ZnTe crystal used for the method of non-linear generation of THz radiation. Theoretical calculations of radiated intensity and electric field were done to analyze the expected bandwidth of the system. Results showed that the generation and the detection crystal thicknesses affect the obtained bandwidth of the system in that the bandwidth limiting factor is the crystal thickness and not the ultrafast laser pulse duration. Especially for detection, measurements obtained with both a 1mm thick and 2mm thick &lt / 110&gt / ZnTe crystal showed that there was not much difference in bandwidth as was predicted by theory. Also in order to increase the signal to noise ratio, the optics used in the system were optimized. It was found that by using same focal lengths for focusing and collimating optics around the generation crystal and by using a short focal length parabolic mirror, S/N could be improved. After these improvements this THz-TDS system which uses optical rectification for THz generation and electro-optic method for THz detection had a larger bandwidth up to 3 THz but with a lower 100:1 signal to noise ratio.
36

Imaging Solar Cells Using Terahertz Waves

Kayra, Seda 01 January 2011 (has links) (PDF)
In this thesis, Terahertz Time-Domain spectroscopy (THz-TDS) was used in order to measure the electrical properties of silicon solar cells. The advantage of THz-TDS is that it allows us to measure the electrical properties without electrical contacts. In order to perform these measurements, a reflection based system was constructed and the changes in the peak amplitude in the time-domain under a, 450mW 808 nm continuous wave laser source were measured. The solar cell that was used in this thesis was manufactured in Middle East Technical University Microelectromechanical Systems (METU-MEMS) research laboratories located in Ankara, Turkey. The solar cell that we used in the measurements had a thickness of 0.45 mm and was produced on a single silicon crystal in &lt / 100&gt / direction. It is made up of a p-type base and n-type emitter to create p-n junction. Also, it has a Si4N3 AR coating and Al back contacts on it. To compare the THz measurements to that of electrical measurements, some electrical contact measurements were performed on the solar cell under laser illumination. By using these measurements, the energy conversion efficiency and the quantum efficiency of the solar cell were calculated and measured as 3.44 % and 7%, respectively under the 450mW, 808nm illumination on a specific area of the cell. The results that were obtained form the electrical measurements were compared with the THz results. We found that in order to understand the efficiency of the solar cell using THz-TDRS, a more comprehensive study needs to be done where the changes in the reflection of the THz radiation under different excitation powers and different configurations of the system need to be studied.
37

Optical And Electrical Transport Properties Of Some Quaternarythallium Dichalcogenides

Guler, Ipek 01 June 2011 (has links) (PDF)
In this thesis, in order to study the structural, optical and electrical transport properties of Tl2In2S3Se, TlInSeS and Tl2In2SSe3 crystals, X-ray diffraction (XRD), energy dispersive spectroscopic analysis (EDSA), transmission, reflection, photoluminescence (PL), thermally stimulated current (TSC) and photoconductivity decay (PC) measurements were carried out. Lattice parameters and atomic composition of these crystals were determined from XRD and EDSA experiments, respectively. By the help of transmission and reflection experiments, the room temperature absorption data were analyzed and it was revealed the coexistence of indirect and direct band gap energies of the studied crystals. Moreover, the refractive index dispersion parameters - oscillator energies, dispersion energies, oscillator strengths, oscillator wavelengths and zero-frequency refractive indexes were determined. Temperature-dependent transmission measurements made it possible to find the rate of change of indirect band gaps with temperature, absolute zero values of the band gap energies and Debye temperatures of these crystals. From the analysis of the transmission and reflection measurements, it was established that, there is a decrease in the values of indirect and direct band gaps energies and an increase in zero-frequency refractive indexes with increasing of selenium content. PL measurements were carried out to obtain the detailed information about recombination levels in crystals studied. The behavior of PL spectra were investigated as a function of laser excitation intensity and temperature. The variation of the spectra with laser excitation intensity and temperature suggested that the observed emission bands in these crystals were due to the donor-acceptor pair recombination. TSC measurements were carried out with various heating rates at different illumination temperatures to obtain information about trap levels in these crystals. The mean activation energies, attempt-to-escape frequencies, concentrations and capture cross sections of the traps were determined as a result of TSC spectra analysis. The analysis of experimental TSC curves registered at different light illumination temperatures revealed the exponential trap distribution in the studied crystals. From the analysis of PC measurements, carrier lifetimes were obtained.
38

Fabrication Of Silicon Nanowires By Electroless Etching And Investigation Of Their Photovoltaic Applications

Ozdemir, Baris 01 August 2011 (has links) (PDF)
Silicon is the most important semiconducting material for optoelectronics owing to its suitable and tunable physical properties. Even though there are several alternatives, silicon based solar cells are still the most widely produced and commercially feasible system. Extensive efforts have been spent in order to increase the efficiency and decrease the cost of these systems. The studies that do not focus on replacement of the semiconducting material, mostly concentrate on the developments that could be brought by nanotechnological approaches. In this aspect, utilization of silicon nanowires has been predicted to improve the efficiency of the silicon based solar cell technology. Moreover, besides solar cells, silicon nanowires have been investigated for many other electronic systems such as thermoelectrics, light emitting diodes, biological/chemical sensors, photodetectors and lithium ion v batteries. Therefore, production of silicon nanowires through a cost-effective and well controlled method could make important contributions to many fields. In this thesis, electroless etching method, which is a novel and solution based method enabling vertically aligned silicon nanowire array fabrication over large areas, is investigated. A detailed parametric study resulting in a full control over the resultant nanowire morphology is provided. The parameters affecting the structure have been determined as etching time, solution temperature, solution concentration, pressure and starting wafer characteristics. The results show that electroless etching method could replace the conventional silicon nanowire fabrication methods. It was shown that specific nanowire lengths for any application, can be obtained simply by adjusting the parameters of electroless etching system. One of the most crucial features of vertically aligned silicon nanowire arrays is their remarkable antireflective properties. The optical reflectivity measurements showed that 42% reflectivity of pristine polished silicon wafer decreases down to 1% following fabrication of silicon nanowire arrays on their surface. This unique characteristic reveals that these nanowires could be used as antireflective surfaces in solar cells. Moreover, it was determined that p-n heterojunctions that are formed by silicon nanowires, namely radial heterojunctions, would yield higher efficiencies compared to planar heterojunctions because of the dramatic increase in the charge carrier collection efficiency and orthogonal photon absorption. On this subject, n-type silicon nanowire arrays were fabricated by electroless etching followed by drop casting Poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS) organic layer on these nanowires as the complementary layer, forming the radial heterojunction. The energy conversion efficiency of silicon nanowire / PEDOT: PSS device was found as 5.30%, while planar silicon / PEDOT: PSS control device displayed only 0.62% efficiency. Developments and optimizations in both the electroless etching method and solar cell models could lead to important developments in photovoltaic industry.
39

Land Surface Emissivity Variations At Infrared Wavelegths For The Selected Regions In Turkey

Akyuz, Berat 01 September 2011 (has links) (PDF)
In this thesis, land surface emissivity variations are examined with respect to the land surface type, wavelength, and time (season and month) for the seven selected regions in Turkey using MODIS emissivity database and precipitation amount. Investigating land surface emissivity variations are important in many applications and it is known that studies about these variations are done for many regions except Turkey. This study is prior knowledge for Turkey to be used in infrared (IR) background models, surface radiation budget calculations, and land cover type classifications specific for Turkey. The results indicate that precipitation has a great influence on monthly/seasonal emissivity values depending on the land cover type and causes spectral emissivity variations. As a result, we determined appropriate IR wavelengths for the investigation of the seasonal emissivity variations and seasonal factors causing emissivity variations according to the land cover types.
40

Design And Implementation Of A Luminescence Emission Spectrometer

Togay, Evren 01 March 2012 (has links) (PDF)
Luminescence is the emission of light resulting from radiative transition of an atom from an excited state to a ground state. This radiative transition yields emission of photons and the luminescence is the general name which is used to classify &ldquo / cold emission&rdquo / other than the blackbody radiation. Spectroscopy involves the measurement of intensity of emitted, absorbed or scattered electromagnetic radiation as a function of wavelength. Thus, it is a valuable tool in the study of understanding the luminescence production mechanisms. Measurement of emission spectra gives information about the energy levels of transition and structure, geometry and composition of the sample. In this study, a versatile luminescence emission spectrometer was designed and developed with the main aim of measuring Photoluminescence (PL), Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) emission spectra of materials relevant for dosimetry. The spectrometer was constructed around a Littrow type monochromator by developing the necessary hardware, firmware and software. Wavelength calibration, measurement of spectral response and determination of resolution of the spectrometer were done using calibration lamps and a calibrated spectroradiometer. Finally the performance of the constructed spectrometer was tested by measuring the emission spectra of materials such as BeO, Al2O3 and CaF2 wherever possible the measured spectra were compared with the ones reported in the literature.

Page generated in 0.171 seconds