• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maximizing propylene selectivity while minimizing dry gas yield in FCC unit through post synthetic modifications of nano ZSM-5

Alnaimi, Essa January 2017 (has links)
This research explored different catalytic cracking zeolite additives to improve propylene selectivity and minimize dry gas yield. A comprehensive study of the effect of zeolite structure, pore system and crystal size on maximizing propylene production in FCC unit and the effect of post synthetic modifications on the physicochemical properties and cracking activity of ZSM-5 was investigated using X-ray diffraction (XRD), pyridine adsorption fourier transform infra-red (FTIR), 27Al and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) and the catalytic cracking using n-heptane, as a model compound for heavy naphtha. The catalytic performances of these additives were evaluated in a fixed-bed reactor unit using n-heptane as a model compound for naphtha at temperatures 450 - 500 oC and W/F 38 - 92 gcat.h/mol. A range of zeolites were tested with ZSM-5 showing the optimum results at high feed conversion. Further studies on ZSM-5 crystal size illustrated that nano ZSM-5 (300 nm) was superior compared to the regular ZSM-5 (2000 - 4000 nm) in achieved conversion level and propylene selectivity. These improvements were attributed to the shorter path lengths for the reactant reducing diffusion constraints significantly. Modifying nano ZSM-5 acidity using steaming, acid leaching and silanation showed significant improvement over nano ZSM-5 parent. Mild steaming of nano ZSM-5 improved both n-heptane conversion and propylene selectivity whilst severe steaming only improved propylene selectivity. This work attempted to address the often discussed catalytic activity enhancement from mild steaming and identified newly created moderate acid sites as the source of increased activity. Dealumination by acid leaching decreased the total aluminium content of nano ZSM-5 and changed the Brønsted/Lewis ratio. Increasing the B/L ratio, increased the conversion and propylene selectivity. In addition, this research focussed for the first time on the silanation of nano ZSM-5 and its effect on n-heptane cracking, in particular, propylene and dry gas selectivity. Silica was deposited on the external surface of nano ZSM-5 neutralising the acidic sites and as a result, dry gas yield was significantly decreased due to the elimination of non-selective cracking. However, the trade off with conversion was high.
2

An Exploration of the Properties of Repair Template DNA that Promote Precision Genome Editing

Ghanta, Krishna S. 03 August 2021 (has links)
CRISPR/Cas9 induced DNA breaks can be precisely repaired by cellular homology-directed repair (HDR) pathways using exogenously provided template DNA (donor). However, the full potential of precision editing is hindered in many model systems by low cutting efficiencies, low HDR efficiencies and, cytotoxicity related to Cas9 and donor DNA. In this thesis, I address these challenges and present methods that we developed to increase HDR efficiencies in multiple model organisms. In Caenorhabditis elegans, we show that by reducing toxicity high editing efficiencies can be achieved with single stranded oligonucleotide (ssODN) donors. We demonstrate that melting dsDNA donors dramatically improves the knock-in efficiencies of longer (1kb) edits. In addition, we describe 5′-terminal modifications to the donor molecules that further increase the frequency of precision editing. With our methodology a single optimally injected animal can yield more than 100 Green Fluorescent Protein (GFP) positive progeny, dramatically enhancing efficiency of genome editing. Next, we demonstrate the generality of 5′ modified donors by extending our studies to human cell cultures and mice zygotes. In mammalian models, 2′OMe-RNA modifications consistently increase HDR efficiencies by several fold over unmodified donors. Furthermore, end-modified donors exhibited a striking reduction in end-joining reactions including reduced concatemer formation and reduced direct ligation into the host genome. Our study demonstrates that HDR can be improved without inhibiting competing end-joining pathways and provides a platform to identify new chemical modifications that could further increase the potency and efficacy of precision genome editing.

Page generated in 0.0923 seconds