• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Post-mortem neuropharmacological studies of human and rat brain relating to schizophrenia and antipsychotic drug action

Mason, Sarah January 1995 (has links)
No description available.
2

MODULATORY ACTIONS OF SEROTONERGIC SYSTEM IN CARDIAC FUNCTION, BEHAVIOR, AND SENSORIMOTOR CIRCUIT ACTIVITY IN DROSOPHILA MELANOGASTER

Majeed, Zana R. 01 January 2016 (has links)
In this dissertation, I have focused on the role of serotonin (5-HT) as a modulator in heart rate, feeding and locomotion behaviors as well as sensorimotor circuit activity in Drosophila melanogaster. A general overview in the actions of the serotonergic (5-HTergic) system on the larval heart and nervous system in larvae and adults is reviewed in Chapter One. I sought to further study the actions of serotonergic system to provide additional insights into cellular and molecular underpinnings in the actions of 5-HT.In Chapter two, I present studies on mechanisms of action by 5-HT in larvae cardiac system. For this purpose, genetic and pharmacological approaches were used. The transgenic flies used expressed hM4Di receptors (designer receptors exclusively activated by designer drugs (DREADDs)) which were employed to manipulate the activity of Gαi heterotrimeric protein through activation of engineered G-protein coupled receptors hM4Di DREADD. The activation of hM4Di DREADD receptors by clozapine-N-oxide (CNO) arrested the heart beat; however, pharmacological manipulation of adenylyl cyclase activity and cAMP levels had no significant effect on heart rate. In Chapter Three the role of various 5-HT receptor subtypes that mediate 5-HT action in larval cardiac tissue is addressed. In this study, various 5-HT agonists and antagonists were employed. The pharmacological results demonstrate that a 5-HT2 agonist significantly increases the heart rate. Furthermore, 5-HT2 antagonist, markedly reduces the effect of 5-HT. In addition, I employed genetic approaches to corroborate the pharmacological results. In addition, I investigated the role of the 5-HTergic system in locomotion and feeding behaviors as well as in modulation of sensorimotor circuits. This study is delineated in Chapter Four. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae various pharmacological agents. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or induced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotor activity and feeding behavior in larvae. In addition, acute activation of 5-HT neurons disrupts normal locomotor activity in adult flies. In Chapter Five, I addressed direct actions of fluoxetine on synaptic transmission at neuromuscular junctions (NMJs), neural properties, and cardiac function unrelated to fluoxetine’s action as a selective 5-HT reuptake inhibitor using Drosophila, crayfish and primary neurons in mouse model system. Fluoxetine application blocked action potentials in crayfish axons, enhanced occurrences of spontaneous synaptic vesicle fusion events at NMJs of both Drosophila and crayfish. In rodent primary neurons, fluoxetine application resulted in increase of cytoplasmic Ca2+. I also developed teaching modules, which are presented in Chapter Seven, to guide students how to exploit a vast array of genetic tools, such as optogenetics in Drosophila to manipulate various neural circuits and to observe their effects on behavior and sensorimotor circuit activity. I also developed a module to teach college level students a hands-on experiment regarding proprioception and tension receptors in crab limb, which is detailed in Chapter Eight.
3

Development of 'in vitro' intestinal models to study the pharmacology of drugs affecting the gastrointestinal tract in normal and diseased conditions : development of a cell culture model for intestinal pharmacology

Batista Lobo, Samira January 2009 (has links)
Studies investigating the effect of 5-HT receptors mediating a response in the neonatal intestine have been limited. There are evidences that the development of new neurones continues past postnatal term and this suggests that receptors expression may differ during maturation. Thus, 'in vitro' experiments were carried out to investigate the effects of ACh, atropine, 5-HT and its related drugs on intact intestinal segments taken from the ileum of adult and neonate rats. The application of ACh (3nM-1mM) and 5-HT (3nM-1mM) induced contractions in a concentration dependent manner in all tissues examined. The 5-HT induced contractions were only sensitive to antagonism by atropine (1μM) in segments taken from the neonates but not adults. The pre-treatment with methysergide (5-HT1/2/5-7 receptor antagonist), ritanserin (5-HT2 receptor antagonist), granisetron (5-HT3 receptor antagonist) and RS 23597 (5-HT4 receptor antagonist) at 1μM or a combination of ritanserin, granisetron, plus RS 23597 at 1μM significantly reduced or abolished contractile responses induced by 5-HT. SB 269970A (5-HT7 receptor antagonist) and WAY 100635 (5-HT1A receptor antagonist) at 1μM failed to influence contractile responses induced by 5-HT or the challenges to 5-HT receptor agonists, 5-CT (5-HT1A/7 receptor agonist) and 8-OH-DPAT (5-HT1A receptor agonist) at a concentration range of 10nM-0.1mM, indicating the unlikely involvement of 5-HT1A and 5-HT7 receptors in the mediation of contractile responses in the neonatal rat ileum. Results indicate differences in cholinergic receptor involvement during postnatal maturation and suggest the involvement of 5-HT2, 5-HT3 and 5-HT4 receptors in the mediation of contractile responses to 5-HT in the neonatal rat ileum. There is a growing need to decrease animal usage in pharmacological experiments. This may be achieved by the development of 'in vitro' cell culture models. Thus attempts were also made to develop a cell culture model of neonatal intestine to further investigate the action of pharmacologically active agents. The isolation of individual cell populations from segments taken from the intestine of rat neonates were achieved by ligation of both ends of the intestine prior to incubation in trypsin so that a gradual dissociation could be monitored. This was supported by histological procedures, determining the time required to extract large numbers of cells from different intestinal layers. Differential adhesion and selective cytotoxicity techniques were used for further purification of intestinal smooth muscle cells (ISMC), neuronal cells, and a coculture of ISMC and neuronal cells, and these were characterised through immunostaining with antibodies to α-smooth muscle actin, α-actinin and the 5-HT3 receptor. A protocol for cryopreservation of ISMC was designed in order to protect cells against genetic instability, enhance cell availability and reduce animal usage. Results showed that cells extracted from the intestine are viable for up to 4-months. ISMC functionality was analysed via the application of known pharmacologically active drugs on ISMC, which were plated onto glass and silicone elastomer substrate. The cultured ISMC responded to the application of drugs such as potassium chloride (KCl), carbachol, 5-HT and noradrenaline (NA). Large population of cocultures seeded onto silicone elastomers or cholesteric liquid crystal substrates (LC) were assessed for their ability to produce a collective response to KCl application. Attempts were made to detect any deformations of the substrate surface due to the exposure to KCl and NA. Cholesteric LC substrates seemed to be the most suitable material for investigating the cellular tensions. The availability of cell cultures allowed the development of an intestinal model of inflammation. This was achieved through the use of lipopolysaccharide (LPS)-induced inflammation and was confirmed by assessing the levels pro-inflammatory mediators interleukin (IL-8) and nitric oxide (NO), which were significantly elevated. Reduction of IL-8 ad NO was also examined using granisetron and L-NAME and Chaga mushroom extract. Granisetron and L-NAME reduced the NO production during short incubation times. However, an elevated level of NO was observed when longer treatment times were examined. The Chaga mushroom extract caused a significant reduction in NO production in the model of inflammation. This indicates that this model may be a valuable tool for the investigation of other pro-inflammatory mediators and may contribute for the investigation of more selective drugs in the management of intestinal inflammation in neonates.
4

Dopamine and 5-HT Receptor Sensitivity Does Not Correlate With Neostriatal Dopamine or 5-HT Content

Kostrzewa, Richard M., Brus, Ryszard, Perry, K. W., Fuller, R. W. 15 April 1996 (has links)
To explore associations of neostriatal (NST) endogenous levels of dopamine (DA) and serotonin (5-HT) with sensitivity of their receptors, graded doses of 6-hydroxydopamine HBr (0 to 400 μg, ICV; 6-OHDA; desipramine pretreatment, 20 mg/kg IP) were given to rats between birth (P 0) and P 42. Numbers of vacuous chewing movements (VCMs) induced by SKF 38393 or m-chlorophenylpiperazine (m-CPP), respective DA D1 and 5-HT2 agonists, were subsequently determined. Enhanced SKF 38393-induced VCMs occurred when NST DA was reduced 97%-98% by high dose 6-OHDA (100-134 μg) at P 0 or P 3, but not in rats with 95%-97% loss in DA produced by 6-OHDA at P7 (134 μg) or P3 (67 μg). Enhanced m-CPP-induced VCMs occurred even when NST 5-HT content was not elevated after 6-OHDA (134 μg at P 10). Accordingly, D1 and 5-HT receptor sensitivity is not correlated with respective NST DA and 5-HT contents. The stage of ontogeny at the time of DA denervation may be the governing influence on receptor sensitivity.
5

Development of 'In vitro' intestinal models to study the pharmacology of drugs affecting the gastrointestinal tract in normal and diseased conditions. Development of a cell culture model for intestinal pharmacology.

Batista Lobo, Samira January 2009 (has links)
Studies investigating the effect of 5-HT receptors mediating a response in the neonatal intestine have been limited. There are evidences that the development of new neurones continues past postnatal term and this suggests that receptors expression may differ during maturation. Thus, `in vitro¿ experiments were carried out to investigate the effects of ACh, atropine, 5-HT and its related drugs on intact intestinal segments taken from the ileum of adult and neonate rats. The application of ACh (3nM-1mM) and 5-HT (3nM-1mM) induced contractions in a concentration dependent manner in all tissues examined. The 5-HT induced contractions were only sensitive to antagonism by atropine (1¿M) in segments taken from the neonates but not adults. The pre-treatment with methysergide (5-HT1/2/5-7 receptor antagonist), ritanserin (5-HT2 receptor antagonist), granisetron (5-HT3 receptor antagonist) and RS 23597 (5-HT4 receptor antagonist) at 1¿M or a combination of ritanserin, granisetron, plus RS 23597 at 1¿M significantly reduced or abolished contractile responses induced by 5-HT. SB 269970A (5-HT7 receptor antagonist) and WAY 100635 (5-HT1A receptor antagonist) at 1¿M failed to influence contractile responses induced by 5-HT or the challenges to 5-HT receptor agonists, 5-CT (5-HT1A/7 receptor agonist) and 8-OH-DPAT (5-HT1A receptor agonist) at a concentration range of 10nM-0.1mM, indicating the unlikely involvement of 5-HT1A and 5-HT7 receptors in the mediation of contractile responses in the neonatal rat ileum. Results indicate differences in cholinergic receptor involvement during postnatal maturation and suggest the involvement of 5-HT2, 5-HT3 and 5-HT4 receptors in the mediation of contractile responses to 5-HT in the neonatal rat ileum. There is a growing need to decrease animal usage in pharmacological experiments. This may be achieved by the development of `in vitro¿ cell culture models. Thus attempts were also made to develop a cell culture model of neonatal intestine to further investigate the action of pharmacologically active agents. The isolation of individual cell populations from segments taken from the intestine of rat neonates were achieved by ligation of both ends of the intestine prior to incubation in trypsin so that a gradual dissociation could be monitored. This was supported by histological procedures, determining the time required to extract large numbers of cells from different intestinal layers. Differential adhesion and selective cytotoxicity techniques were used for further purification of intestinal smooth muscle cells (ISMC), neuronal cells, and a coculture of ISMC and neuronal cells, and these were characterised through immunostaining with antibodies to ¿-smooth muscle actin, ¿-actinin and the 5-HT3 receptor. A protocol for cryopreservation of ISMC was designed in order to protect cells against genetic instability, enhance cell availability and reduce animal usage. Results showed that cells extracted from the intestine are viable for up to 4-months. ISMC functionality was analysed via the application of known pharmacologically active drugs on ISMC, which were plated onto glass and silicone elastomer substrate. The cultured ISMC responded to the application of drugs such as potassium chloride (KCl), carbachol, 5-HT and noradrenaline (NA). Large population of cocultures seeded onto silicone elastomers or cholesteric liquid crystal substrates (LC) were assessed for their ability to produce a collective response to KCl application. Attempts were made to detect any deformations of the substrate surface due to the exposure to KCl and NA. Cholesteric LC substrates seemed to be the most suitable material for investigating the cellular tensions. The availability of cell cultures allowed the development of an intestinal model of inflammation. This was achieved through the use of lipopolysaccharide (LPS)-induced inflammation and was confirmed by assessing the levels pro-inflammatory mediators interleukin (IL-8) and nitric oxide (NO), which were significantly elevated. Reduction of IL-8 ad NO was also examined using granisetron and L-NAME and Chaga mushroom extract. Granisetron and L-NAME reduced the NO production during short incubation times. However, an elevated level of NO was observed when longer treatment times were examined. The Chaga mushroom extract caused a significant reduction in NO production in the model of inflammation. This indicates that this model may be a valuable tool for the investigation of other pro-inflammatory mediators and may contribute for the investigation of more selective drugs in the management of intestinal inflammation in neonates.
6

Sex-Specific Effects of a Mediterranean-Based Diet on Behavioural and Serotonin-Related Colonic and Hippocampal Changes in a Mouse Model of Prenatal Stress

Lefebvre, Geneviève 28 August 2023 (has links)
Prenatal stress may increase the risk for depression in offspring and it has been suggested that this could be linked to alterations in tryptophan metabolism, leading to serotonergic changes. Dietary patterns based on the Mediterranean (Med) diet, which includes foods rich in nutrients involved in the tryptophan-serotonin pathway, have been linked to depressive symptom improvements when used as an intervention. This thesis examined, in a mouse model, whether a Med-based diet normalized depressive-like behaviour and changes in the serotonin system in the colon and hippocampus resulting from a repeated physical restraint stressor administered during the second trimester in adult C57BL/6N female and male offspring. The Med-based diet modulated behaviour and hippocampal serotonin receptors primarily in females and changed the enzyme involved in the colonic serotonergic pathway in males. These results suggest that a Med-based diet may help improve behavioural disturbances stemming from prenatal stress in a sex-specific way, perhaps through its actions on the gut-brain serotonin system.
7

Conception, synthèse et évaluation biologique de nouveaux ligands sérotoninergiques 5-HT₇ / Design, synthesis and biological evaluation of serotoninergic 5-HT₇ Ligands

Jouha, Jabrane 18 July 2017 (has links)
Dès la découverte des récepteurs 5-HT₇ en 1993, des études intenses de relation structure-activité ont été poursuivies par plusieurs groupes de recherches, dont notre laboratoire. En conséquence, un nombre impressionnant de ligands potentiels 5-HT₇ sont référencés dans la littérature mais peu sont des agonistes sélectifs. Dans ce contexte, ce travail de thèse a pour but principal, la conception de quatre classes distinctes de ligands et leur évaluation en tant que ligand agoniste des 5-HT₇R. Dans un premier temps, nous nous sommes intéressés à la préparation de ligands de type 2,4-diaminopyrido [2,3-d]pyrimidinique et 2,4-diaminopyrimidinique. Par la suite, nous avons élaboré une troisième famille de composés bâtis sur une charpente pyridinique, à partir d’un des plus intéressants agonistes sélectifs 5-HT₇ actuels et ce, via une stratégie multi-étape efficace. La dernière partie de ce mémoire a été consacrée au développement d’une méthode originale et rapide de synthèse des tétrahydro-1,6-naphtyridines polysubstituées au départ de 3-vinyl-1,2,4-triazines judicieusement fonctionnalisées via une séquence domino d’addition d’aza-Michael et une cyclisation intramoléculaire de Diels-Alder à demande électronique inverse. / Serotonin-activated cell-surface receptor 5-HT₇ is the most recently discovered 5-HT receptor. Intensive studies of structure-activity relationships have been pursued by several research groups, including our laboratory, and have resulted in the publication in the literature of an impressive number of potential ligands 5-HT₇. In this context, the main purpose of this thesis is to design four distinct classes of ligands. First, we were interested in the preparation of 2,4-diaminopyrido[2,3-d]pyrimidinique and 2,4-diaminopyrimidinique ligands. Subsequently, we developed a third family of compounds built on a pyridine scaffold, from one of the most interesting current 5-HT₇ selective agonists, via an effective multistep strategy. The last part of this thesis was devoted to developing an original and rapid method for the synthesis of polysubstituted tetrahydro-1,6-naphthyridines starting from the 3-vinyl-1,2,4-triazines platforms via a domino addition sequence of aza-Michael and intramolecular inverse-electron-demand Diels-Alder cyclization.

Page generated in 0.0381 seconds