1 |
DUAL LOX/COX INHIBITION: A NOVEL STRATEGY TO PREVENT NEUROVASCULAR LEAKAGE IN EPILEPSYSokola, Brent S. 01 January 2018 (has links)
Epilepsy affects 3.4 million patients in the USA and is characterized by recurring seizures. The blood-brain barrier is leaky in epilepsy and may contribute to seizure progression but the mechanisms which cause this leakage are not fully understood. We hypothesized that seizures trigger LOX- and COX-mediated blood-brain barrier leakage and that dual LOX/COX inhibition prevents barrier leakage in vivo. To test this hypothesis, we administered either the dual LOX/COX inhibitor licofelone or a combination of the 5-LOX inhibitor zileuton and the COX-2 inhibitor celecoxib to rats that experienced status epilepticus (SE). Serum and brain capillaries were isolated 48 hours after SE and serum S100β levels were measured and Texas Red™ leakage rates were determined. Dual inhibition of 5-LOX and COX prevented serum S100β elevations observed in SE rats in a dose-dependent manner with licofelone. Inhibition of 5-LOX and COX-2 with zileuton and celecoxib completely prevented serum S100β elevation. Texas Red™ leakage rates for SE rats were also reduced in a dose-depended manner with licofelone and reduced to control rates with zileuton and celecoxib. These data support our hypothesis that seizure-induced blood-brain barrier leakage is mediated by LOX and COX, and inhibition of these enzymes prevents barrier leakage.
|
2 |
Caractérisation structurale de la 5-lipoxygénase humaine et de son inhibition : support à la conception rationnelle d'inhibiteurs mixtes 5-LOX/COX-2/Structural characterization of human 5-lipoxygenase and its inhibition : support to the rational design of dual 5-LOX/COX-2 inhibitorsCharlier, Caroline 15 February 2006 (has links)
En bloquant les deux voies majeures de métabolisation de l’acide arachidonique, les inhibiteurs mixtes 5-LOX/COX-2 sont de puissants agents anti-inflammatoires non stéroïdiens minimisant les effets secondaires gastro-intestinaux et allergiques (asthme). Par ailleurs, ils offrent de nouvelles perspectives dans le traitement préventif de certains cancers. Contrairement à la COX-2, déjà largement étudiée, le niveau de connaissances concernant la 5-LOX humaine est beaucoup plus restreint. Notre objectif a donc été de caractériser sa structure ainsi que son mode d’interaction avec des inhibiteurs de type non redox, dans le but d’aider à la conception rationnelle d’inhibiteurs mixtes 5-LOX/COX-2. Dans un premier temps, la comparaison d’inhibiteurs 5-LOX non redox de la littérature a permis de mettre en évidence un modèle de pharmacophore à 5 points. Par ailleurs, la structure 3D de la 5-LOX humaine n’étant pas encore déterminée, nous l’avons modélisée par homologie avec la 15-LOX de lapin cristallisée et nous avons étudié, par docking, le mode d’interaction d’inhibiteurs 5-LOX non redox au sein du site actif. La combinaison des approches centrées, respectivement, sur les ligands et sur la protéine, nous a permis d’affiner l’hypothèse de pharmacophore et de proposer un modèle général d’interaction au sein du site actif 5-LOX./Dual 5-LOX/COX-2 inhibitors, acting on both major arachidonic acid metabolic pathways, are potent non-steroidal anti-inflammatory agents, with a reduced gastro-intestinal toxicity and fewer allergic adverse reactions. Moreover, they are promising in the treatment of several cancers. Whereas COX-2 has already been extensively studied, little structural or mechanistic information is available regarding human 5-LOX. Therefore, we focussed on this enzyme and characterized its 3D structure as well as its interaction with non redox inhibitors in order to help the design of dual 5-LOX/COX-2 inhibitors. Firstly, comparison of non redox 5-LOX inhibitors from the literature led to the generation of a five-point pharmacophore model. The 3D structure of human 5-LOX was then modelled based on the crystal structure of rabbit 15-LOX and, the binding modes of representative ligands were investigated through docking studies. Combination of both ligand-based and target-based approaches allowed the refinement of the pharmacophore hypothesis and led to the proposal of an interaction model for non redox inhibitors inside the 5-LOX active site.
|
3 |
Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting PotencyRauwald, Hans Wilhelm, Maucher, Ralf, Dannhardt, Gerd, Kuchta, Kenny 05 May 2023 (has links)
The present study aims at the isolation and identification of diverse phenolic polyketides from Aloe vera (L.) Burm.f. and Aloe plicatilis (L.) Miller and includes their 5-LOX/COX-1 inhibiting potency. After initial Sephadex-LH20 gel filtration and combined silica gel 60- and RP18-CC, three dihydroisocoumarins (nonaketides), four 5-methyl-8-C-glucosylchromones (heptaketides) from A. vera, and two hexaketide-naphthalenes from A. plicatilis have been isolated by means of HSCCC. The structures of all polyketides were elucidated by ESI-MS and 2D 1H/13C-NMR (HMQC, HMBC) techniques. The analytical/preparative separation of 3R-feralolide, 3′-O-β-d-glucopyranosyl- and the new 6-O-β-d-glucopyranosyl-3R-feralolide into their respective positional isomers are described here for the first time, including the assignment of the 3R-configuration in all feralolides by comparative CD spectroscopy. The chromones 7-O-methyl-aloesin and 7-O-methyl-aloeresin A were isolated for the first time from A. vera, together with the previously described aloesin (syn. aloeresin B) and aloeresin D. Furthermore, the new 5,6,7,8-tetrahydro-1-O-β-d-glucopyranosyl- 3,6R-dihydroxy-8R-methylnaphtalene was isolated from A. plicatilis, together with the known plicataloside. Subsequently, biological-pharmacological screening was performed to identify Aloe polyketides with anti-inflammatory potential in vitro. In addition to the above constituents, the anthranoids (octaketides) aloe emodin, aloin, 6′-(E)-p-coumaroyl-aloin A and B, and 6′-(E)-p-coumaroyl-7-hydroxy-8-O-methyl-aloin A and B were tested. In the COX-1 examination, only feralolide (10 µM) inhibited the formation of MDA by 24%, whereas the other polyketides did not display any inhibition at all. In the 5-LOX-test, all aloin-type anthranoids (10 µM) inhibited the formation of LTB4 by about 25–41%. Aloesin also displayed 10% inhibition at 10 µM in this in vitro setup, while the other chromones and naphthalenes did not display any activity. The present study, therefore, demonstrates the importance of low molecular phenolic polyketides for the known overall anti-inflammatory activity of Aloe vera preparations.
|
Page generated in 0.0151 seconds