• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel function of human beta-defensin 2 : protecting epidermal barrier against pathogenic proteases

Wang, Bingjie January 2017 (has links)
Atopic Dermatitis (AD) is a common chronic relapsing inflammatory skin disease affecting 15 - 20% of children and 2 - 10% of adults worldwide, with significant morbidity. A hallmark of AD is disruption of the critical barrier function of upper epidermal layers, causatively linked to environmental stimuli, genetics and infections. Another typical feature of AD is skin infections, especially from Staphylococcus aureus (S. aureus), which closely relates with the disease severity. Although not a normal flora, S. aureus is found on 75-100% of AD lesions (< 30% on healthy skin). S. aureus secrete a range of virulence factors, including extracellular toxins and proteases which contribute to disease pathogenesis. S. aureus serine protease A (SspA/V8) is a well-characterised extracellular protease widely expressed among different S. aureus strains. The pathogenic effect of V8 protease has been demonstrated in vivo, damaging murine skin integrity via effects on the stratum corneum (SC), but the targets for this V8-mediated damage remains unclear. The capacity of proteases to induce barrier dysfunction has been proposed as a key driving force in the initiation and exacerbation of AD. Thus, understanding the host factors that maintain barrier function is a priority in developing novel therapeutic approaches. This thesis therefore aimed at detecting host factors which can combat the barrier dysfunction caused by pathogenic proteases, assessing their relevance in vitro and ex vivo and elucidating the underlying mechanisms. Firstly, an in vitro skin barrier integrity model was developed, using both immortalized and primary keratinocytes, to evaluate the barrier damage mediated by pathogenic proteases. The results revealed that S. aureus protease SspA/V8 is the dominant secreted factor (in laboratory and AD clinical strains of S. aureus) inducing barrier integrity impairment. In addition, studies demonstrated that V8 protease itself was sufficient to induce barrier disruption, and this phenotype was not dependent on cell death, but rather on breaking down of cell-cell junctions. Key tight junction proteins including claudin-1 and occludin were found to be degraded by V8 protease. Next, a wide range of host and bacterial factors were investigated to determine whether they could promote protection of keratinocytes against V8 damage. Several factors, including IL-1β, TNF-α, heat-killed Staphylococcus epidermidis (which is the main skin normal flora), were found to induce protection against V8 protease, with IL-1β having the strongest effect. In addition, data indicated that this IL-1β-mediated protection was independent of effects on claudin-1 but occurred via secretion of a transferrable host factor. Induction of keratinocyte expression of the antimicrobial/host defence peptide human beta-defensin 2 (hBD2) was found to be the mechanism underpinning this IL-1β- induced protective effect. Endogenous hBD2 expression was required and sufficient for protection against V8 protease-mediated integrity damage, and exogenous application of hBD2 was also protective. An ex vivo model using human skin tissue was also established to address this novel function of hBD2, and preliminary data indicated that exogenous hBD2 protected against V8-mediated damage in this system. Overall, my data reveal a novel function for the antimicrobial/host defence peptide hBD2. This modulatory property of hBD2, independent of its antibacterial effects, gives new significance to the defective induction of hBD2 in the barrier-defective skin lesions of AD and indicates therapeutic potential to prevent S. aureus-mediated aggravation of skin barrier dysfunction in AD.
2

DUAL LOX/COX INHIBITION: A NOVEL STRATEGY TO PREVENT NEUROVASCULAR LEAKAGE IN EPILEPSY

Sokola, Brent S. 01 January 2018 (has links)
Epilepsy affects 3.4 million patients in the USA and is characterized by recurring seizures. The blood-brain barrier is leaky in epilepsy and may contribute to seizure progression but the mechanisms which cause this leakage are not fully understood. We hypothesized that seizures trigger LOX- and COX-mediated blood-brain barrier leakage and that dual LOX/COX inhibition prevents barrier leakage in vivo. To test this hypothesis, we administered either the dual LOX/COX inhibitor licofelone or a combination of the 5-LOX inhibitor zileuton and the COX-2 inhibitor celecoxib to rats that experienced status epilepticus (SE). Serum and brain capillaries were isolated 48 hours after SE and serum S100β levels were measured and Texas Red™ leakage rates were determined. Dual inhibition of 5-LOX and COX prevented serum S100β elevations observed in SE rats in a dose-dependent manner with licofelone. Inhibition of 5-LOX and COX-2 with zileuton and celecoxib completely prevented serum S100β elevation. Texas Red™ leakage rates for SE rats were also reduced in a dose-depended manner with licofelone and reduced to control rates with zileuton and celecoxib. These data support our hypothesis that seizure-induced blood-brain barrier leakage is mediated by LOX and COX, and inhibition of these enzymes prevents barrier leakage.
3

Untersuchungen zum Einfluss von RhoA und der RhoA Effektorkinase PKN auf die TNF-induzierte Barrieredysfunktion in humanen intestinalen Epithelzellen

Gluth, Markus 18 June 2012 (has links)
Chronisch entzündliche Darmerkrankungen stellen eine Gruppe von chronischen, häufig in Schüben verlaufenden Erkrankungen mit rezidivierenden Entzündungen des Gastrointestinaltraktes dar. Es konnte gezeigt werden, dass eine gestörte Barrierefunktion einen wichtigen Schritt für die Pathogenese darstellt und dass das Zytokin Tumornekrosefaktor alpha (TNF) eine entscheidende Rolle dabei spielt. Die Rolle der kleinen GTPase RhoA bei der TNF-induzierten Barrieredysfunktion ist aufgrund der Komplexität der Signalwege nicht vollständig verstanden. Daher sollte der Einfluss von RhoA und der RhoA Effektorkinase PKN auf diese Prozesse in vitro mit Hilfe eines induzierbaren Expressionssystems untersucht werden, welches die kontrollierte Expression einer konstitutiv aktiven (KA) RhoA- und PKN-Mutante sowie einer dominant negativen (DN) PKN-Mutante ermöglichte. Die Induktion der KA RhoA Expression führte zu einer Störung der epithelialen Barriere. Eine simultane Interferon-gamma und TNF-Behandlung resultierte ebenfalls in einer gestörten Barrierefunktion, welche in KA RhoA Zellen weniger stark ausgeprägt war. Die TNF-Behandlung führte zu einer Aktivierung von PKN, weshalb dieses Protein ein Kandidat für die Vermittlung dieser Effekte darstellte. Inhibition von PKN mit Inhibitoren oder der Expression der DN Mutante führten zu einer Aggravierung der TNF-induzierten Barrieredysfunktion, welche durch eine Verringerung des transepithelialen elektrischen Widerstandes und eine erhöhte Ionenpermeabilität charakterisiert war. Diese Veränderungen wurden von einer Erhöhung des Myosin Leichtketten und NF-kappaB p65-Phosphorylierungsniveaus sowie von morphologischen Veränderungen begleitet. Im Gegensatz dazu konnten diese Veränderungen durch die Expression der KA PKN Variante abgeschwächt bzw. verhindert werden. Diese Ergebnisse liefern Hinweise auf eine potenzielle Rolle der RhoA Effektorkinase PKN bei der Modulation der TNF-induzierten Barrieredysfunktion in intestinalen Epithelzellen. / Inflammatory bowel diseases are relapsing systemic inflammatory diseases of the gastrointestinal tract associated with high morbidity and costs. A plethora of studies demonstrated that impaired intestinal barrier function is a key step in the pathogenesis of inflammatory bowel diseases and that the cytokine tumor necrosis factor alphpa (TNF) is of pivotal importance for this effect. Although the small GTPase RhoA has been implicated in the control of tight junction function, its role in TNF induced barrier dysfunction is not entirely understood due to the complexity of its downstream signaling pathways. Therefore, the contribution of RhoA and its effector kinase PKN on TNF induced barrier dysfunction was investigated in vitro. An inducible expression system that allowed the doxycyline controlled expression of a constitutively active (CA) RhoA and PKN mutant as well as a dominant negative (DN) PKN mutant was generated. Induction of CA RhoA expression led to an impaired epithelial barrier. Simultaneous Interferon-gamma and TNF treatment also resulted in barrier perturbation, but this defect was attenuated when CA RhoA was expressed. As treatment with TNF resulted in activation of the RhoA effector kinase PKN, this protein constitutes a candidate molecule for the mediation of these effects. Inhibition of PKN by inhibitory compounds as well as expression of a dominant negative PKN mutant aggravated TNF-induced barrier dysfunction, characterized by a decline in transepithelial electrical resistance and increased ion permeability. These alterations were accompanied by an increase in myosin light-chain and NF-kappaB p65 subunit phosphorylation level as well as morphological changes of the tight junctions. Conversely, expression of a CA PKN mutant attenuated or prevented these changes. These results provide support for a potential role of the RhoA effector kinase PKN in modulating the barrier disrupting effects of TNF in the intestinal epithelium.
4

ANALYSES OF THE DEVELOPMENT AND FUNCTION OF STEM CELL DERIVED CELLS IN NEURODEGENERATIVE DISEASES.pdf

Sailee Sham Lavekar (14152875) 03 February 2023 (has links)
<p>Human pluripotent stem cells (hPSCs) are an attractive tool for the study of different neurodegenerative diseases due to their potential to form any cell type of the body. Due to their versatility and self-renewal capacity, they have different applications such as disease modeling, high throughput drug screening and transplantation. Different animal models have helped answer broader questions related to the physiological functioning of various pathways and the phenotypic effects of a particular neurodegenerative disease. However, due to the lack of success recapitulating some targets identified from animal models into successful clinical trials, there is a need for a direct translational disease model. Since their advent, hPSCs have helped understand various disease effectors and underlying mechanisms using genetic engineering techniques, omics studies and reductionist approaches for the recognition of candidate molecules or pathways required to answer questions related to neurodevelopment, neurodegeneration and neuroregeneration. Due to the simplified approach that iPSC models can provide, some <em>in vitro</em> approaches are being developed using microphysiological systems (MPS) that could answer complex physiological questions. MPS encompass all the different <em>in vitro</em> systems that could help better mimic certain physiological systems that tend to not be mimicked by <em>in vivo</em> models. In this dissertation, efforts have been directed to disease model as well as to understand the intrinsic as well as extrinsic cues using two different MPS. First, we have used hPSCs with Alzheimer’s disease (AD)-related mutations to differentiate into retinal organoids and identify AD related phenotypes for future studies to identify retinal AD biomarkers. Using 5 month old retinal organoids from AD cell lines as well as controls, we could identify retinal AD phenotypes such as an increase in Aβ42:Aβ40 ratio along with increase in pTau:Tau. Nanostring analyses also helped in identification of potential target genes that are modulated in retinal AD that were related to synaptic dysfunction.  Thus, using retinal organoids for the identification of retinal AD phenotypes could help delve deeper into the identification of future potential biomarkers in the retina of AD patients, with the potential to serve as a means for early identification and intervention for patients. The next MPS we used to serve to explore non-cell autonomous effects associated with glaucoma to explore the neurovascular unit. Previous studies have demonstrated the degeneration of RGCs in glaucoma due to a point mutation OPTN(E50K) that leads to the degeneration of RGCs both at morphological and functional levels. Thus, using the previous studies as a basis, we wanted to further unravel the impact of this mutation using the different cell types of the neurovascular unit such as endothelial cells, astrocytes and RGCs. Interestingly, we observed the barrier properties being impacted by the mutation present in both RGCs and astrocytes demonstrated through TEER, permeability and transcellular transport changes. We also identified a potential factor TGFβ2 that was observed to be overproduced by the OPTN E50K astrocytes to demonstrate similar effects with the exogenous addition of TGFβ2 on the barrier. Furthermore, the inhibition of TGFβ2 helped rescue some of the barrier dysfunction phenotypes. Thus, TGFβ2 inhibition can be used as a potential candidate that can be used to further study its impact in <em>in vivo</em> models and how that can be used in translational applications. Thus, MPS systems have a lot of applications that can help answer different physiologically relevant questions that are hard to approach using <em>in vivo</em> models and the further development of these systems to accentuate the aspects of neural development and how it goes awry in different neurodegenerative diseases.  </p>
5

Tight Junctions - The Link Between HIV-Associated Intestinal Barrier Dysfunction and Loss of Immune Homeostasis

Chung, Charlotte Yuk-Yan 09 February 2015 (has links)
No description available.

Page generated in 0.1096 seconds