• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and expression of erythroid ALV synthase /

Elferink, Cornelis Johan. January 1987 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, 1988. / Includes bibliographical references.
2

Characterization and expression of the chicken 5-Aminolevulinatesynthase gene /

Day, Adrienne Rose. January 1987 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Biochemistry, 1988.
3

Characterization and expression of erythroid ALV synthase / by Cornelis Johan Elferink

Elferink, Cornelis Johan January 1987 (has links)
Includes bibliography / 108 leaves, [24] leaves of plates : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, 1988
4

Characterization and expression of the chicken 5-Aminolevulinatesynthase gene / by Adrienne Rose Day

Day, Adrienne Rose January 1987 (has links)
v, 107 leaves, [22] leaves of plates : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 1988
5

Studies of proteins in heme and iron metabolism /

Dzikaitė, Vijolė, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
6

5-Aminolevulinate Synthase: Characterization of the Enzymatic Mechanism, Reaction Selectivity, and Structural Plasticity

Stojanovski, Bosko M. 26 February 2015 (has links)
5-Aminolevulinate synthase (ALAS) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent condensation between glycine and succinyl-CoA to generate coenzyme A (CoA), CO2, and 5-aminolevulinate (ALA). The chemical mechanism of this reaction, which represents the first and regulated step of heme biosynthesis in mammals, involves the formation of a short-lived glycine quinonoid intermediate and an unstable 2-amino-3-ketoadipate intermediate. Using liquid chromatography coupled with tandem mass spectrometry to analyze the products from the reaction of murine erythroid ALAS (mALAS2) with O-methylglycine and succinyl-CoA, we directly identified the chemical nature of the inherently unstable 2-amino-3-ketoadipate intermediate, which predicates the glycine quinonoid species as its precursor. With stopped-flow absorption spectroscopy, we detected and confirmed the formation of the quinonoid intermediate upon reacting glycine with ALAS. Significantly, in the absence of the succinyl-CoA substrate, the external aldimine predominates over the glycine quinonoid intermediate. When instead of glycine, L-serine was reacted with ALAS, a lag phase was observed in the progress curve for the L-serine external aldimine formation, indicating a hysteretic behavior in ALAS. Hysteresis was not detected in the T148A-catalyzed L-serine external aldimine formation. These results with T148A, a mALAS2 variant, which, in contrast to the wild-type enzyme, is active with L-serine, suggest that the active site T148 modulates the strict amino acid substrate specificity of ALAS. The rate of ALA release is also controlled by a hysteretic kinetic mechanism (observed as a lag in the ALA external aldimine formation progress curve), consistent with conformational changes governing the dissociation of ALA from ALAS. In Rhodobacter capsulatus ALAS, apart from coordinating the positioning of succinyl-CoA, N85 has an important role in regulating the opening of an active site channel. Here, we have mutated the analogous asparagine of murine erythroid ALAS to a histidine (N150H) and assessed its effects on catalysis through steady-state and pre-steady-state kinetic studies. Quinonoid intermediate formation occurred with a significantly reduced rate for the N150H-catalyzed condensation of glycine with succinyl-CoA during a single turnover. When the same forward reaction was examined under multiple turnovers, the progress curve of the N150H reaction displayed a prolonged decay of the quinonoid intermediate into the steady-state, distinct from the steep decay in the wild-type ALAS reaction. This prolonged decay results from an accelerated transformation of the product, ALA, into the quinonoid intermediate during the reverse N150H-catalyzed reaction. In fact, while wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold lower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the rate for the N150H-catalyzed reverse reaction is 1.7-fold higher than that of the forward reaction. We conclude that N150 is important in establishing a catalytic balance between the forward and reverse reactions, by favoring ALA synthesis over its non-productive transformation into the quinonoid intermediate. Mutations at this position could perturb the delicate heme biosynthetic equilibrium. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphtalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.
7

Exploration of mutations in erythroid 5-aminolevulinate synthase that lead to increased porphyrin synthesis

Fratz, Erica Jean 20 March 2014 (has links)
5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first committed step of heme biosynthesis in animals, the condensation of glycine and succinyl-CoA yielding 5-aminolevuliante (ALA), CoA, and CO2. Murine erythroid-specific ALAS (mALAS2) variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. Transfection of HeLa cells with expression plasmids for mALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatment of HeLa cells expressing mALAS2 variants revealed that mALAS2 expression results in an increase in cell death in comparison to aminolevulinic acid (ALA) treatment producing a similar amount of PPIX. Generation of PPIX is a crucial component in the widely used photodynamic therapies (PDT) of cancer and other dysplasias. The delivery of stable and highly active mALAS2 variants has the potential to expand and improve upon current PDT regimes. Mutations in the C-terminus of human ALAS2 (hALAS2) can increase hALAS2 activity and are associated with X-linked erythropoietic protoporphyria (XLEPP), a disease phenotypically characterized by elevated levels or PPIX and zinc protoporphyrin in erythroblasts. This is apparently due to enhanced cellular hALAS2 activity, but the biochemical relationship between these C-terminal mutations and increased hALAS2 activity is not well understood. HALAS2 and three XLEPP variants were studied both in vitro to compare kinetic and structural parameters and ex vivo in HeLa and K562 cells. Two XLEPP variants, delAGTG, and Q548X, exhibited higher catalytic rates and affinity for succinyl-CoA than wild-type hALAS2, had increased transition temperatures, and caused porphyrin accumulation in HeLa and K562 cells. Another XLEPP mutation, delAT, had an increased transition temperature and caused porphyrin accumulation in mammalian cells, but exhibited a reduced catalytic rate at 37[deg]C in comparison to wild-type hALAS2. The XLEPP variants, unlike wild-type hALAS2, were more structurally responsive upon binding of succinyl-CoA, and adopted distinct features in tertiary and PLP cofactor-binding site. These results imply that the C-terminus of hALAS2 is important for regulating its structural integrity, which affects kinetic activity and stability. XLEPP has only recently been identified as a blood disorder, and thus there are no specific treatments. One potential treatment involves the use of the antibiotic isonicotinic acid hydrazide (isoniazid, INH), commonly used to treat tuberculosis. INH can cause sideroblastic anemia as a side-effect and has traditionally been thought to do so by limiting PLP availability to hALAS2 via direct inhibition of pyridoxal kinase, and reacting with pyridoxal to form pyridoxal isonicotinoyl hydrazone. We postulated that in addition to PLP-dependent inhibition of hALAS2, INH directly acts on hALAS2. Using FACS and confocal microscopy, we show here that INH reduces protoporphyrin IX accumulation in HeLa cells expressing either wild-type human hALAS2 or XLEPP variants. In addition, PLP and pyridoxamine 5'-phosphate (PMP) restored cellular hALAS2 activity in the presence of INH. Kinetic analyses with purified hALAS2 demonstrated non-competitive or uncompetitive inhibition with an apparent Ki of 1.5 uM. Circular dichroism studies revealed that INH triggers structural changes in hALAS2 that interfere with the association of hALAS2 with its PLP cofactor. These studies demonstrate that hALAS2 can be directly inhibited by INH, provide insight into the mechanism of inhibition, and support the prospective use of INH in treating patients with XLEPP and potentially other cutaneous porphyrias.

Page generated in 0.0691 seconds