• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural studies on the glycerol dehydrogenase from Bacillus stearothermophilus

Drewett, Victoria Louise January 1998 (has links)
No description available.
2

Nuclear magnetic resonance spectroscopic studies of bovine α-lactalbumin in solution

Wijesinha Bettoni, Ramani T. January 2000 (has links)
No description available.
3

Characterization of human NFU and its interaction with the molecular chaperone system

Liu, Yushi 27 March 2007 (has links)
No description available.
4

Structural and dynamic characterization of the Golgi Reassembly and Stacking Protein (GRASP) in solution / Caracterização estrutural e dinâmica da proteína de estruturação e compactação do complexo de Golgi (GRASP) em solução

Mendes, Luis Felipe Santos 07 February 2018 (has links)
The Golgi complex is an organelle responsible for receiving synthesized cargo from the endoplasmic reticulum for subsequent post-translations modifications, sorting and secretion. A family of proteins named Golgi Reassembly and Stacking Proteins (GRASP) is essential for the correct assembly and laterally tethering of the Golgi cisternae, a necessary structuration to keep this organelle working correctly. The GRASP structure is mainly composed of two regions: an N-terminal formed by two PDZ domains connected by a short loop (GRASP domain) and a non-conserved C-terminal region, rich in serine and proline residues. Although there are now a few crystal structures solved for the N-terminal domain, it is surprising to notice that no information is currently available regarding a full-length protein or even about dynamic and structural differences between the two PDZs in solution, which is the main functional region of this protein. Using a full-length GRASP model, we were capable of detecting the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. GRASP coexist in a dynamic conformational ensemble of a µs-ms timescale. Our results indicate an unusual behavior of GRASP in solution, closely resembling a class of collapsed intrinsically disordered proteins called molten globule. We report here also the disorder-to-order transition propensities for a native molten globule-like protein in the presence of different mimetics of cell conditions. Changes in the dielectric constant (such as those experienced close to the membrane surface) seem to be the major factor capable of inducing several disorder-to-order transitions in GRASP, which seems to show very distinct behavior when in conditions that mimic the vicinity of the membrane surface as compared to those found when free in solution. Other folding factors such as molecular crowding, counter ions, pH and phosphorylation exhibit lower or no effect on GRASP secondary structure and/or stability. This is the first study focusing on understanding the disorder-to-order transitions of a molten globule structure without the need for any mild denaturing condition. Regarding the PDZs that form the GRASP domain, we observed that GRASPs are formed by a more unstable and flexible PDZ1 and much more stable and structurally well-behaved PDZ2. More than that, many of the unstable regions found in PDZ1 are in the predicted binding pocket, suggesting a structural promiscuity inside this domain that correlates with the functional promiscuity of interacting with multiple protein partners. This thesis presents the first structural characterization of a full-length GRASP, the first model of how GRASPs (or any molten globule-like protein) can be modulated by the cell during different cell functionalities and the first work in the community proving that the established idea that both PDZs are structurally equivalent is not completely right / O complexo de Golgi é um organela responsável pela recepção de carga sintetizada no retículo endoplasmático e por subsequente modificações pós-traducionais, classificação e secreção. Uma família de proteínas chamada Golgi Reassembly and Stacking Proteins (GRASP) é essencial para o correto empilhamento das cisternas e conexões laterais das pilhas do complexo de Golgi, uma estruturação necessária para manter essa organela funcionando corretamente. A estrutura das GRASPs é composta de duas regiões principais: uma extensão N-terminal formado por dois domínios PDZ conectados por um loop (domínio GRASP) e uma região C-terminal não conservada, rica em resíduos de serina e prolina. Embora existam algumas estruturas cristalográficas resolvidas para o domínio N-terminal, é surpreendente notar que não havia nenhuma informação na literatura sobre a construção inteira de um GRASP, ou mesmo um estudo detalhado sobre os PDZs no N-terminal em solução, que é a principal região funcional dessa proteína. Usando um modelo de GRASP em sua construção completa, fomos capazes de detectar a coexistência de estruturas secundárias regulares e grandes quantidades de regiões desordenadas. A estrutura é menos compacta do que uma proteína globular e a alta flexibilidade estrutural torna o seu núcleo hidrofóbico mais acessível ao solvente. GRASPs coexistem em um conjunto conformacional dinâmico numa escala de tempo característico de s-ms. Nossos resultados indicam um comportamento incomum da GRASP em solução, similar à de uma classe de proteínas intrinsicamente desordenadas colapsadas conhecidas como glóbulos fundidos. Nós relatamos também as propensões de transição estrutural do tipo desordem-ordem para uma proteína glóbulo fundido nativa, induzidas pela presença de diferentes miméticos de condições celulares especificas. A mudança na constante dielétrica do meio (como as experimentadas próximas à superfície da membrana biológica) é o principal modulador estrutural, capaz de induzir múltiplas transições desordem-ordem na GRASP, sugerindo um comportamento muito distinto quando em condições que imitam a vizinhança da superfície da membrana em comparação com os encontrados quando livre em solução. Outros fatores de enovelamento, tais como o molecular crowding, contra-ions, pH e a fosforilação exibem efeitos menores (ou nenhum) na estrutura secundária e/ou estabilidade da GRASP. Este é o primeiro estudo focado na compreensão das transições desordem-ordem em uma estrutura do tipo glóbulo fundido sem que houvesse a necessidade de qualquer condição desnaturante. Em relação aos PDZs que formam o domínio GRASP, observamos que as GRASPs são formadas por um PDZ1 mais instável e flexível e um PDZ2 muito mais estável e estruturalmente bem comportado. Mais do que isso, muitas das regiões instáveis encontradas no PDZ1 estão no predito bolsão de ligação, sugerindo uma promiscuidade estrutural dentro desse domínio que se correlaciona com a promiscuidade funcional de interação com múltiplos parceiros proteicos. É apresentado nesta tese a primeira caracterização estrutural de uma GRASP em sua forma completa, o primeiro modelo de como as GRASPs (ou qualquer proteína em forma de glóbulo fundido) pode ser modulada estruturalmente pela célula durante diferentes funcionalidades e o primeiro trabalho na comunidade provando que a estabelecido ideia de que ambos os PDZs são estruturalmente equivalentes não é completamente correta
5

Structural and dynamic characterization of the Golgi Reassembly and Stacking Protein (GRASP) in solution / Caracterização estrutural e dinâmica da proteína de estruturação e compactação do complexo de Golgi (GRASP) em solução

Luis Felipe Santos Mendes 07 February 2018 (has links)
The Golgi complex is an organelle responsible for receiving synthesized cargo from the endoplasmic reticulum for subsequent post-translations modifications, sorting and secretion. A family of proteins named Golgi Reassembly and Stacking Proteins (GRASP) is essential for the correct assembly and laterally tethering of the Golgi cisternae, a necessary structuration to keep this organelle working correctly. The GRASP structure is mainly composed of two regions: an N-terminal formed by two PDZ domains connected by a short loop (GRASP domain) and a non-conserved C-terminal region, rich in serine and proline residues. Although there are now a few crystal structures solved for the N-terminal domain, it is surprising to notice that no information is currently available regarding a full-length protein or even about dynamic and structural differences between the two PDZs in solution, which is the main functional region of this protein. Using a full-length GRASP model, we were capable of detecting the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. GRASP coexist in a dynamic conformational ensemble of a µs-ms timescale. Our results indicate an unusual behavior of GRASP in solution, closely resembling a class of collapsed intrinsically disordered proteins called molten globule. We report here also the disorder-to-order transition propensities for a native molten globule-like protein in the presence of different mimetics of cell conditions. Changes in the dielectric constant (such as those experienced close to the membrane surface) seem to be the major factor capable of inducing several disorder-to-order transitions in GRASP, which seems to show very distinct behavior when in conditions that mimic the vicinity of the membrane surface as compared to those found when free in solution. Other folding factors such as molecular crowding, counter ions, pH and phosphorylation exhibit lower or no effect on GRASP secondary structure and/or stability. This is the first study focusing on understanding the disorder-to-order transitions of a molten globule structure without the need for any mild denaturing condition. Regarding the PDZs that form the GRASP domain, we observed that GRASPs are formed by a more unstable and flexible PDZ1 and much more stable and structurally well-behaved PDZ2. More than that, many of the unstable regions found in PDZ1 are in the predicted binding pocket, suggesting a structural promiscuity inside this domain that correlates with the functional promiscuity of interacting with multiple protein partners. This thesis presents the first structural characterization of a full-length GRASP, the first model of how GRASPs (or any molten globule-like protein) can be modulated by the cell during different cell functionalities and the first work in the community proving that the established idea that both PDZs are structurally equivalent is not completely right / O complexo de Golgi é um organela responsável pela recepção de carga sintetizada no retículo endoplasmático e por subsequente modificações pós-traducionais, classificação e secreção. Uma família de proteínas chamada Golgi Reassembly and Stacking Proteins (GRASP) é essencial para o correto empilhamento das cisternas e conexões laterais das pilhas do complexo de Golgi, uma estruturação necessária para manter essa organela funcionando corretamente. A estrutura das GRASPs é composta de duas regiões principais: uma extensão N-terminal formado por dois domínios PDZ conectados por um loop (domínio GRASP) e uma região C-terminal não conservada, rica em resíduos de serina e prolina. Embora existam algumas estruturas cristalográficas resolvidas para o domínio N-terminal, é surpreendente notar que não havia nenhuma informação na literatura sobre a construção inteira de um GRASP, ou mesmo um estudo detalhado sobre os PDZs no N-terminal em solução, que é a principal região funcional dessa proteína. Usando um modelo de GRASP em sua construção completa, fomos capazes de detectar a coexistência de estruturas secundárias regulares e grandes quantidades de regiões desordenadas. A estrutura é menos compacta do que uma proteína globular e a alta flexibilidade estrutural torna o seu núcleo hidrofóbico mais acessível ao solvente. GRASPs coexistem em um conjunto conformacional dinâmico numa escala de tempo característico de s-ms. Nossos resultados indicam um comportamento incomum da GRASP em solução, similar à de uma classe de proteínas intrinsicamente desordenadas colapsadas conhecidas como glóbulos fundidos. Nós relatamos também as propensões de transição estrutural do tipo desordem-ordem para uma proteína glóbulo fundido nativa, induzidas pela presença de diferentes miméticos de condições celulares especificas. A mudança na constante dielétrica do meio (como as experimentadas próximas à superfície da membrana biológica) é o principal modulador estrutural, capaz de induzir múltiplas transições desordem-ordem na GRASP, sugerindo um comportamento muito distinto quando em condições que imitam a vizinhança da superfície da membrana em comparação com os encontrados quando livre em solução. Outros fatores de enovelamento, tais como o molecular crowding, contra-ions, pH e a fosforilação exibem efeitos menores (ou nenhum) na estrutura secundária e/ou estabilidade da GRASP. Este é o primeiro estudo focado na compreensão das transições desordem-ordem em uma estrutura do tipo glóbulo fundido sem que houvesse a necessidade de qualquer condição desnaturante. Em relação aos PDZs que formam o domínio GRASP, observamos que as GRASPs são formadas por um PDZ1 mais instável e flexível e um PDZ2 muito mais estável e estruturalmente bem comportado. Mais do que isso, muitas das regiões instáveis encontradas no PDZ1 estão no predito bolsão de ligação, sugerindo uma promiscuidade estrutural dentro desse domínio que se correlaciona com a promiscuidade funcional de interação com múltiplos parceiros proteicos. É apresentado nesta tese a primeira caracterização estrutural de uma GRASP em sua forma completa, o primeiro modelo de como as GRASPs (ou qualquer proteína em forma de glóbulo fundido) pode ser modulada estruturalmente pela célula durante diferentes funcionalidades e o primeiro trabalho na comunidade provando que a estabelecido ideia de que ambos os PDZs são estruturalmente equivalentes não é completamente correta
6

Mecanisme de translocation de la toxine diphtérique

Chassaing, Anne 09 October 2008 (has links) (PDF)
La toxine diphtérique (DT) une toxine bactérienne sécrétée par Corynebacterium diphtheriae. Lors de l'intoxication d'une cellule, le domaine de translocation (T) de la DT s'insère dans la membrane à pH acide et assiste la translocation du domaine catalytique (C) dans le cytosol. Le domaine T adopte une conformation en molten globule (MG) et devient compétent pour l'interaction membranaire. Nous avons identifié par mutagenèse les résidus du domaine T dont la protonation favorise la formation de l'état MG en solution et l'interaction membranaire. Les résultats montrent que la protonation concertée des six histidines du domaine T est impliquée dans la formation de l'état MG en solution. La paire His223-257 et l'His251 ont un effet prépondérant dans la formation de l'état molten globule en solution, alors que la paire His322-323 (mais également His251) est davantage impliquée dans l'interaction avec la membrane, et en particulier la liaison à la membrane.<br />Nous avons étudié les changements de conformation des deux domaines C et T dans une protéine CT correspondant à la DT tronquée de son domaine R, afin de comprendre les effets du lien covalent sur les conformations respectives de C et T en fonction du pH. Les mutants CTW50/153F et CTW206/281F ont permis de suivre la fluorescence des Trp de chaque domaine dans la protéine CT. Les<br />résultats montrent que le domaine T dirige la translocation de C dans les premières étapes de la translocation (formation de l'état MG, liaison et insertion membranaire), et qu'il pourrait jouer un rôle de chaperon en stabilisant l'état MG du domaine C.
7

5-Aminolevulinate Synthase: Characterization of the Enzymatic Mechanism, Reaction Selectivity, and Structural Plasticity

Stojanovski, Bosko M. 26 February 2015 (has links)
5-Aminolevulinate synthase (ALAS) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent condensation between glycine and succinyl-CoA to generate coenzyme A (CoA), CO2, and 5-aminolevulinate (ALA). The chemical mechanism of this reaction, which represents the first and regulated step of heme biosynthesis in mammals, involves the formation of a short-lived glycine quinonoid intermediate and an unstable 2-amino-3-ketoadipate intermediate. Using liquid chromatography coupled with tandem mass spectrometry to analyze the products from the reaction of murine erythroid ALAS (mALAS2) with O-methylglycine and succinyl-CoA, we directly identified the chemical nature of the inherently unstable 2-amino-3-ketoadipate intermediate, which predicates the glycine quinonoid species as its precursor. With stopped-flow absorption spectroscopy, we detected and confirmed the formation of the quinonoid intermediate upon reacting glycine with ALAS. Significantly, in the absence of the succinyl-CoA substrate, the external aldimine predominates over the glycine quinonoid intermediate. When instead of glycine, L-serine was reacted with ALAS, a lag phase was observed in the progress curve for the L-serine external aldimine formation, indicating a hysteretic behavior in ALAS. Hysteresis was not detected in the T148A-catalyzed L-serine external aldimine formation. These results with T148A, a mALAS2 variant, which, in contrast to the wild-type enzyme, is active with L-serine, suggest that the active site T148 modulates the strict amino acid substrate specificity of ALAS. The rate of ALA release is also controlled by a hysteretic kinetic mechanism (observed as a lag in the ALA external aldimine formation progress curve), consistent with conformational changes governing the dissociation of ALA from ALAS. In Rhodobacter capsulatus ALAS, apart from coordinating the positioning of succinyl-CoA, N85 has an important role in regulating the opening of an active site channel. Here, we have mutated the analogous asparagine of murine erythroid ALAS to a histidine (N150H) and assessed its effects on catalysis through steady-state and pre-steady-state kinetic studies. Quinonoid intermediate formation occurred with a significantly reduced rate for the N150H-catalyzed condensation of glycine with succinyl-CoA during a single turnover. When the same forward reaction was examined under multiple turnovers, the progress curve of the N150H reaction displayed a prolonged decay of the quinonoid intermediate into the steady-state, distinct from the steep decay in the wild-type ALAS reaction. This prolonged decay results from an accelerated transformation of the product, ALA, into the quinonoid intermediate during the reverse N150H-catalyzed reaction. In fact, while wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold lower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the rate for the N150H-catalyzed reverse reaction is 1.7-fold higher than that of the forward reaction. We conclude that N150 is important in establishing a catalytic balance between the forward and reverse reactions, by favoring ALA synthesis over its non-productive transformation into the quinonoid intermediate. Mutations at this position could perturb the delicate heme biosynthetic equilibrium. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphtalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.
8

Structure, Stability And Unfolding Of Plasmodium falciparum Triosephosphate Isomerase

Ray, Soumya S 12 1900 (has links) (PDF)
No description available.
9

Structural analysis of colicin A: in vitro, in vivo and in silico studies

Pulagam, V. Lakshmi Padmavathi 12 July 2007 (has links)
Colicin A is a water-soluble toxin that forms a voltage-gated channel in the cytoplasmic membrane of target bacteria. In the present thesis, we aimed at studying the closed channel state, the membrane insertion mechanism, the acidic pH induced molten globule state and the interaction of colicin A in living E. coli cells. For that, we used Electron Paramagnetic Resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) method to explore the structural details of colicin A. The EPR studies of the membrane-bound colicin A (reconstituted into proteoliposomes) suggest the transmembrane orientation of the hydrophobic hairpin in the closed channel state. The pH dependent membrane insertion studies indicate that the membrane binding efficiency is significantly enhanced at pH < 3. Moreover, in the presence of a membrane potential, the pH induced membrane-bound state is able to open channels in the liposomes. The membrane-bound conformation (induced by acidic pH) is similar to the conformation of reconstituted colicin A which support the umbrella model for the closed channel state of colicin A. The studies on pH dependent conformational changes suggest that colicin A forms a molten globule at pH 2. The molecular details of pH induced conformational changes were analyzed by molecular dynamic simulations. The results of the MD simulations agree with the EPR results. Conformational changes of colicin A upon interaction with living E. coli cells could also be followed. Comparison between colicin A in wild type (WT) cells and tolB knock-out mutants suggest that the observed conformational changes originate from colicin A which has been already translocated to the inner membrane.
10

Effects of the environment on the conformational stability of the chloride intracellular channel protein CLIC1

McIntyre, Sylvia 20 May 2008 (has links)
CLIC1 is an intracellular membrane protein that is unusual in that it can exist in both a soluble and an integral membrane form. The manner in which this protein inserts into membranes is unknown although it is proposed to undergo a change in structure whereby it initially experiences a degree of unfolding and then refolds into its new membrane-bound conformation. This study focuses on the characterisation of CLIC1 in terms of its secondary, tertiary and quaternary structure, the determination of its conformational stability at equilibrium and the establishment of its unfolding kinetics, all under conditions of varying pH, polarity, redox conditions, temperature and ionic strength. CLIC1 was found to be most stable at pH 7.0 / 20oC. The unfolding process is two-state and cooperative, producing a DG(H2O) of ~10 kcal/mol and a m-value of ~2 kcal/mol per molar urea. A decrease in pH to 5.5 or an increase in temperature to 37oC resulted in the stabilisation of an equilibrium intermediate species under mild denaturing conditions and a destabilisation of the native state. This was further evidenced by an increase in the rate of unfolding of CLIC1 from the native state to the denatured state under these conditions. A state with similar properties to the intermediate species was detected in the absence of urea at pH 5.5 / 37oC and under non-reducing conditions at both pH 7.0 / 20oC and pH 5.5 / 20oC. The intermediate species is more hydrophobic than either the native or denatured state; it is stabilised by salts, has a reduced secondary structure, increased flexibility and a buried Trp35 relative to the native state. The rate of formation of the intermediate species is a slow process which may involve an oligomerisation step. The results from this study provide an interpretation for the structure and mechanism of CLIC1 pore formation in vivo by comparing the effects of the environment on the structure and stability of the protein.

Page generated in 0.065 seconds