• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 16
  • 15
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis of 2,4-Disubstituted Pyrimidine Derivatives as Potential 5-HT7 Receptor Antagonist.

Sullivan, Shannon M. 05 May 2008 (has links)
The synthesis of a series of 2-chloropyrimidine derivatives is described. The synthesis began with a nucleophilic addition of lithiated heterocyclic molecules to the 4 position of 2-chloropyrimidine to give dihydropyrimidine intermediates. The intermediates were oxidized to the pyrimidine ring using the DDQ method. This was followed by an addition-elimination reaction of an amine to the 2-chloropyrimidine derivative. The structure and properties of the final compounds were analyzed by melting point, combustion analysis, and 13C-NMR and 1H-NMR spectroscopy. Biological activities in vitro of the synthesized compounds as antagonists of the 5-HT2a and 5-HT7 receptors were determined by an independent laboratory.
22

Further Studies in Adenosinergic and Monoaminergic Mechanisms of Analgesia by Amitriptyline

Liu, Jean 12 July 2012 (has links)
In this thesis, rodent models of chronic pain were used to explore analgesic mechanisms that may potentially be engaged in spinal and peripheral compartments by systemically-administered amitriptyline, a tricyclic antidepressant. The first project (Chapter 2) identified the roles of spinal adenosine A1 and serotonin 5-HT7 receptors, as well as of peripheral adenosine A1 receptors, in the acute antinociceptive effects of amitriptyline in mice. The second project (Chapter 3) examined the potential utility of amitriptyline as a preventive analgesic against persistent post-surgical pain, and involved perioperative administration of amitriptyline after peripheral nerve injury in rats. Changes in post-injury behavioural outcomes, as well as spinal noradrenergic sprouting, were assessed. Overall, spinal serotonergic pathways linked to adenosine A1 receptors, as well as peripheral adenosine A1 receptors, appear to be important in antinociception by amitriptyline. Preventive analgesia by this drug does not appear to result from anatomical changes in spinal noradrenergic pathways.
23

Molecular Mechanisms of Serotonergic Signaling: Role in Neuronal Outgrowth and Receptor Oligomerization / Molekulare Mechanismen des serotonergen Systems: Rolle bei neuronalem Wachstum und Rezeptoroligomerisierung

Kobe, Fritz 30 April 2010 (has links)
No description available.
24

Synthesis of Molecular Probes for Exploring the Human Consciousness, 5-HT<sub>7</sub> Ligands and Salvinorins

Holmberg, Pär January 2005 (has links)
<p>In this study, we have addressed the serotonergic and the opioid system within the CNS. Both systems are of outmost importance in the etiology of disease states, especially mental disorders. </p><p>In our investigation of the serotonergic system, we have synthesized novel enantiomerically pure 6-aryl-3-amino- and 8-aryl-3-aminochromans as ligands for the 5-HT<sub>7</sub> receptor. One reason for the lack of understanding of the physiological functionality of the serotonin 5-HT<sub>7</sub> receptor, the most recently discovered member of the serotonin receptor family, is the absence of partial agonists and agonists. In this series, we have identified partial agonists with more than189 fold selectivity over the 5-HT<sub>1A </sub>receptor and one agonist with 29 fold greater selectivity over the serotonin 5-HT<sub>1A </sub>receptor. Thus the present series constitutes a starting point for developing highly selective ligands for the 5-HT<sub>7</sub> receptor. </p><p>In our investigation of the opioid system, our focus has been on the natural product salvinorin A, which is a highly selective kappa opioid receptor agonist. In the total synthesis of salvinorin A, we have accomplished the synthesis of a key intermediate, 6-(3-furyl)-4-methyl-5,6-dihydro-pyran-2-one via ring closing metathesis. Furthermore, synthetic methodologies have been developed as a part of the total synthesis. Several lipases have been screeened for their ability to generate enantiomerically pure 1-(3-Furyl)-3-buten-1-ol via bio-catalyzed hydrolysis of the corresponding acetate. The lipase from <i>Pseudomonas fluorescens</i> was identified as having stereoselectivity high enough to generate a % <i>ee </i>value above 98%. We have also developed a route for the introduction of a hydroxyl functionality in the γ position of α,β-unsaturated cyclic ketones by the regioselective oxidation of 1-silyloxy-1,3-dienes using dimethyldioxirane. We have initiated the investigation of the pharmacophore responsible for the kappa opioid activity by synthesizing simplified analogues of salvinorin A. A synthetic route providing easy access to simplified analogues of salvinorin A have been established.</p>
25

Synthesis of Molecular Probes for Exploring the Human Consciousness, 5-HT7 Ligands and Salvinorins

Holmberg, Pär January 2005 (has links)
In this study, we have addressed the serotonergic and the opioid system within the CNS. Both systems are of outmost importance in the etiology of disease states, especially mental disorders. In our investigation of the serotonergic system, we have synthesized novel enantiomerically pure 6-aryl-3-amino- and 8-aryl-3-aminochromans as ligands for the 5-HT7 receptor. One reason for the lack of understanding of the physiological functionality of the serotonin 5-HT7 receptor, the most recently discovered member of the serotonin receptor family, is the absence of partial agonists and agonists. In this series, we have identified partial agonists with more than189 fold selectivity over the 5-HT1A receptor and one agonist with 29 fold greater selectivity over the serotonin 5-HT1A receptor. Thus the present series constitutes a starting point for developing highly selective ligands for the 5-HT7 receptor. In our investigation of the opioid system, our focus has been on the natural product salvinorin A, which is a highly selective kappa opioid receptor agonist. In the total synthesis of salvinorin A, we have accomplished the synthesis of a key intermediate, 6-(3-furyl)-4-methyl-5,6-dihydro-pyran-2-one via ring closing metathesis. Furthermore, synthetic methodologies have been developed as a part of the total synthesis. Several lipases have been screeened for their ability to generate enantiomerically pure 1-(3-Furyl)-3-buten-1-ol via bio-catalyzed hydrolysis of the corresponding acetate. The lipase from Pseudomonas fluorescens was identified as having stereoselectivity high enough to generate a % ee value above 98%. We have also developed a route for the introduction of a hydroxyl functionality in the γ position of α,β-unsaturated cyclic ketones by the regioselective oxidation of 1-silyloxy-1,3-dienes using dimethyldioxirane. We have initiated the investigation of the pharmacophore responsible for the kappa opioid activity by synthesizing simplified analogues of salvinorin A. A synthetic route providing easy access to simplified analogues of salvinorin A have been established.

Page generated in 0.029 seconds