1 |
Hankel operators, convolutions and other operators related to linear systemsHarper, Zen Michael January 2004 (has links)
No description available.
|
2 |
Hypercyclic operators and related topicsPenilla, Manuel De la Rosa Penilla January 2008 (has links)
Hypercyclicity, strictly speaking, dates back to 1929 when the first example in the literature appeared. However it was not until the mid-80's, with the discovery of the Hypercyclicity Criterion, that this theory started its evolution. This criterion embraces the conditions that assure a continuous linear operator to be hypercyclic. A considerable number of hypercyclic operators satisfy these conditions. Indeed, every single example known until 2007 satisfied such criterion. It was natural to posed the question if all the hypercyclicity operators must satisfy the Hypercyclicity Criterion, such a question is known as the Great Open Problem in the theory of hypercyclicity.
|
3 |
The asymptotic stability of stochastic kernel operatorsBrown, Thomas John 06 1900 (has links)
A stochastic operator is a positive linear contraction, P : L1 --+ L1,
such that
llPfII2 = llfll1 for f > 0. It is called asymptotically stable if the iterates pn f of
each density converge in the norm to a fixed density. Pf(x) = f K(x,y)f(y)dy,
where K( ·, y) is a density, defines a stochastic kernel operator. A general probabilistic/
deterministic model for biological systems is considered. This leads to the
LMT operator
P f(x) = Jo - Bx H(Q(>.(x)) - Q(y)) dy,
where -H'(x) = h(x) is a density. Several particular examples of cell cycle models
are examined. An operator overlaps supports iffor all densities f,g, pn f APng of 0
for some n. If the operator is partially kernel, has a positive invariant density and
overlaps supports, it is asymptotically stable. It is found that if h( x) > 0 for
x ~ xo ~ 0 and
["'" x"h(x) dx < liminf(Q(A(x))" - Q(x)") for a E (0, 1] lo x-oo
then P is asymptotically stable, and an opposite condition implies P is sweeping.
Many known results for cell cycle models follow from this. / Mathematical Science / M. Sc. (Mathematics)
|
4 |
The asymptotic stability of stochastic kernel operatorsBrown, Thomas John 06 1900 (has links)
A stochastic operator is a positive linear contraction, P : L1 --+ L1,
such that
llPfII2 = llfll1 for f > 0. It is called asymptotically stable if the iterates pn f of
each density converge in the norm to a fixed density. Pf(x) = f K(x,y)f(y)dy,
where K( ·, y) is a density, defines a stochastic kernel operator. A general probabilistic/
deterministic model for biological systems is considered. This leads to the
LMT operator
P f(x) = Jo - Bx H(Q(>.(x)) - Q(y)) dy,
where -H'(x) = h(x) is a density. Several particular examples of cell cycle models
are examined. An operator overlaps supports iffor all densities f,g, pn f APng of 0
for some n. If the operator is partially kernel, has a positive invariant density and
overlaps supports, it is asymptotically stable. It is found that if h( x) > 0 for
x ~ xo ~ 0 and
["'" x"h(x) dx < liminf(Q(A(x))" - Q(x)") for a E (0, 1] lo x-oo
then P is asymptotically stable, and an opposite condition implies P is sweeping.
Many known results for cell cycle models follow from this. / Mathematical Science / M. Sc. (Mathematics)
|
Page generated in 0.0174 seconds