• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 13
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 17
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some Aspects on Robust Stability of Uncertain Linear Singularly Perturbed Systems with Multiple Time Delays

Chen, Ching-Fa 21 June 2002 (has links)
In this dissertation, the robust stability of uncertain continuous and discrete singularly perturbed systems with multiple time delays is investigated. Firstly, the asymptotic stability for a class of linear continuous singularly perturbed systems with multiple time delays is investigated. A simple estimate of an upper bound of singular perturbation parameter is proposed such that the original system is asymptotically stable for any . Moreover, a delay-dependent criterion, but -independent, is proposed to guarantee the asymptotic stability of the original system. Secondly, we consider the robust stability problem of uncertain continuous singularly perturbed systems with multiple time delays. Two delay-dependent criteria are proposed to guarantee the robust stability of a class of uncertain continuous multiple time-delay singularly perturbed systems subject to unstructured perturbations. Thirdly, the robust D-stability of nominally stable discrete uncertain systems with multiple time delays is considered. Finally, the robust stability of nominally stable uncertain discrete singularly perturbed systems with multiple time delays subject to unstructured and structured perturbations is investigated. Some criteria, delay-dependent or delay-independent, will be proposed to guarantee the robust stability of the uncertain discrete multiple time-delay singularly perturbed systems. The improvements of our results over those in recent literature are also illustrated if the comparisons are possible. Some numerical examples will also be provided to illustrate our main results.
2

Mathematical modeling of the population dynamics of tuberculosis

Adebiyi, Ayodeji O. January 2016 (has links)
>Magister Scientiae - MSc / Tuberculosis (TB) is currently one of the major public health challenges in South Africa, and in many countries. Mycobacterium tuberculosis is among the leading causes of morbidity and mortality. It is known that tuberculosis is a curable infectious disease. In the case of incomplete treatment, however, the remains of Mycobacterium tuberculosis in the human system often results in the bacterium developing resistance to antibiotics. This leads to relapse and treatment against the resistant bacterium is extremely expensive and difficult. The aim of this work is to present and analyse mathematical models of the population dynamics of tuberculosis for the purpose of studying the effects of efficient treatment versus incomplete treatment. We analyse the spread, asymptotic behavior and possible eradication of the disease, versus persistence of tuberculosis. In particular, we consider inflow of infectives into the population, and we study the effects of screening. A sub-model will be studied to analyse the transmission dynamics of TB in an isolated population. The full model will take care of the inflow of susceptibles as well as inflow of TB infectives into the population. This dissertation enriches the existing literature with contributions in the form of optimal control and stochastic perturbation. We also show how stochastic perturbation can improve the stability of an equilibrium point. Our methods include Lyapunov functions, optimal control and stochastic differential equations. In the stability analysis of the DFE we show how backward bifurcation appears. Various phenomena are illustrated by way of simulations.
3

Álgebras de Lie e aplicações à sistemas alternantes /

Nascimento, Rildo Pinheiro do. January 2005 (has links)
Orientador: Geraldo Nunes Silva / Banca: Antonio Carlos Gardel Leitão / Banca: Fernando Manuel Ferreira Lobo Pereira / Resumo: Neste trabalho é feito um estudo aprofundado da estabilidade de sistemas alternantes, principalmente via teoria de Lie. Inicialmente são apresentados os principais conceitos básicos da álgebra de Lie, necessários para o estudo dos critérios de estabilidade dos sistemas alternantes. Depois são discutidos critérios de estabilidade para sistemas alternantes. É feita a exposição da demonstração de que para todo sistema linear da forma ? x = Apx p = 1, 2, ...,N, com as matrizes Ap assintóticamente estáveis e comutativas duas a duas, existe uma função de Lyapunov quadrática comum. Uma condição suficiente para estabilidade assintótica de um sistema linear alternante é apresentada em termos da álgebra de Lie gerada por uma família infinita de matrizes. A saber, se esta álgebra de Lie é solúvel, então o sistema alternante é estável para uma mudança arbitrária de sinal. Em seguida são estudadas condições mais fracas. Supondo que a álgebra de Lie não é solúvel, mas é decomponível na soma de um ideal solúvel e uma subálgebra com grupo de Lie compacto, então o sistema alternante é globalmente exponencialmente uniformemente estável. Entretanto, se o grupo de Lie não for compacto, verifica-se que é possível gerar uma família finita de matrizes estáveis tais que o correspondente sistema linear alternante não é estável. Finalmente, os resultados correspondentes de estabilidade local para sistemas alternantes não lineares são apresentados. / Abstract: In this work it is undertaken a deep study of stability for switched systems, mainly via Lie algebraic Theory. At first, the basic concepts and results from Lie algebra necessary for the study of stability of switched systems are presented. Criteria for stability are discussed. It is also done an exposition of the proof that all linear systems ? x = Apx, p = 1, 2, ...,N, with stable and pairwisely commutative matrices Ap, have common quadratic Lyapounov functions. A sufficient condition for asymptotic stability of switched linear systems is presented in term of the Lie algebra generated by a family infinite matrices. That is, if this Lie algebra is solvable, then the switched systems are stable for an arbitrary change of sinal. Next weaker conditions are studied. If the Lie algebra is decomposable into two subalgebras in which one is a solvable ideal and the other has a compact Lie group, then the switched systems are globally exponentially uniformly stable. However, if the Lie group is not compact, it is also possible to generate a finite family of stable matrices such that the corresponding switched linear systems are not stable. Finally, corresponding local stability results are presented for nonlinear systems. / Mestre
4

The Unsymmetric Two Impacts Per Cycle Steady State Motion of the Impact Damper

Mohammed, Mohammed 09 1900 (has links)
<p> Steady state response of a single degree of freedom system with impact damper, with the main emphasis of two impacts (symmetric or unsymmetric)/cycle motion, and its asymptotic stability criterion are derived analytically. Stability regions are determined for wide range of parameters of the impact damper by using digital computer. </p> <p> Experimental study is also made to verify the assumptions taken in the analytical solution and to obtain general response of the system for wide range of parameters of the impact damper. </p> <p> As a result, it is found that unsymmetric two impacts per cycle motion exists and is stable for a wide range of parameters of the impact damper. </p> <p> Also, it is found that three and four impacts/cycle motions exist and are stable. </p> <p> Stability boundaries are found to be a complicated function of the impact damper parameters. </p> / Thesis / Master of Engineering (MEngr)
5

Construction and analysis of efficient numerical methods to solve mathematical models of TB and HIV co-infection

Ahmed, Hasim Abdalla Obaid January 2011 (has links)
Philosophiae Doctor - PhD / The global impact of the converging dual epidemics of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major public health challenges of our time, because in many countries, human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB) are among the leading causes of morbidity and mortality. It is found that infection with HIV increases the risk of reactivating latent TB infection, and HIV-infected individuals who acquire new TB infections have high rates of disease progression. Research has shown that these two diseases are enormous public health burden, and unfortunately, not much has been done in terms of modeling the dynamics of HIV-TB co-infection at a population level. In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models. Comparative numerical results are also provided for each model. / South Africa
6

Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infection

Elsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them.
7

Construction and analysis of efficient numerical methods to solve Mathematical models of TB and HIV co-infection

Ahmed, Hasim Abdalla Obaid. January 2011 (has links)
In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models. Comparative numerical results are also provided for each model.
8

Construction and analysis of efficient numerical methods to solve mathematical models of TB and HIV co-infection

Ahmed, Hasim Abdalla Obaid January 2011 (has links)
<p>The global impact of the converging dual epidemics of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major public health challenges of our time, because in many countries, human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB) are among the leading causes of morbidity and mortality. It is found that infection with HIV increases the risk of reactivating latent TB infection, and HIV-infected individuals who acquire new TB infections have high rates of disease progression. Research has shown that these two diseases are enormous public health burden, and unfortunately, not much has been done in terms of modeling the dynamics of HIV-TB co-infection at a population level. In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models.&nbsp / Comparative numerical results are also provided for each model.</p>
9

Construction and analysis of efficient numerical methods to solve mathematical models of TB and HIV co-infection

Ahmed, Hasim Abdalla Obaid January 2011 (has links)
<p>The global impact of the converging dual epidemics of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major public health challenges of our time, because in many countries, human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB) are among the leading causes of morbidity and mortality. It is found that infection with HIV increases the risk of reactivating latent TB infection, and HIV-infected individuals who acquire new TB infections have high rates of disease progression. Research has shown that these two diseases are enormous public health burden, and unfortunately, not much has been done in terms of modeling the dynamics of HIV-TB co-infection at a population level. In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models.&nbsp / Comparative numerical results are also provided for each model.</p>
10

Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infection

Elsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them.

Page generated in 0.1096 seconds