Spelling suggestions: "subject:"local asymptotic stability"" "subject:"focal asymptotic stability""
1 |
Construction and analysis of efficient numerical methods to solve mathematical models of TB and HIV co-infectionAhmed, Hasim Abdalla Obaid January 2011 (has links)
Philosophiae Doctor - PhD / The global impact of the converging dual epidemics of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major public health challenges of our time, because in many countries, human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB) are among the leading causes of morbidity and mortality. It is found that infection with HIV increases the risk of reactivating latent TB infection, and HIV-infected individuals who acquire new TB infections have high rates of disease progression. Research has shown that these two diseases are enormous public health burden, and unfortunately, not much has been done in terms of modeling the dynamics of HIV-TB co-infection at a population level. In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models. Comparative numerical results are also provided for each model. / South Africa
|
2 |
Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infectionElsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them.
|
3 |
Construction and analysis of efficient numerical methods to solve Mathematical models of TB and HIV co-infectionAhmed, Hasim Abdalla Obaid. January 2011 (has links)
In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models. Comparative numerical results are also provided for each model.
|
4 |
Construction and analysis of efficient numerical methods to solve mathematical models of TB and HIV co-infectionAhmed, Hasim Abdalla Obaid January 2011 (has links)
<p>The global impact of the converging dual epidemics of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major public health challenges of our time, because in many countries, human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB) are among the leading causes of morbidity and mortality. It is found that infection with HIV increases the risk of reactivating latent TB infection, and HIV-infected individuals who acquire new TB infections have high rates of disease progression. Research has shown that these two diseases are enormous public health burden, and unfortunately, not much has been done in terms of modeling the dynamics of HIV-TB co-infection at a population level. In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models.  / Comparative numerical results are also provided for each model.</p>
|
5 |
Construction and analysis of efficient numerical methods to solve mathematical models of TB and HIV co-infectionAhmed, Hasim Abdalla Obaid January 2011 (has links)
<p>The global impact of the converging dual epidemics of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major public health challenges of our time, because in many countries, human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB) are among the leading causes of morbidity and mortality. It is found that infection with HIV increases the risk of reactivating latent TB infection, and HIV-infected individuals who acquire new TB infections have high rates of disease progression. Research has shown that these two diseases are enormous public health burden, and unfortunately, not much has been done in terms of modeling the dynamics of HIV-TB co-infection at a population level. In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models.  / Comparative numerical results are also provided for each model.</p>
|
6 |
Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infectionElsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them.
|
7 |
Construction and analysis of efficient numerical methods to solve Mathematical models of TB and HIV co-infectionAhmed, Hasim Abdalla Obaid. January 2011 (has links)
In this thesis, we study these models and design and analyze robust numerical methods to solve them. To proceed in this direction, first we study the sub-models and then the full model. The first sub-model describes the transmission dynamics of HIV that accounts for behavior change. The impact of HIV educational campaigns is also studied. Further, we explore the effects of behavior change and different responses of individuals to educational campaigns in a situation where individuals may not react immediately to these campaigns. This is done by considering a distributed time delay in the HIV sub-model. This leads to Hopf bifurcations around the endemic equilibria of the model. These bifurcations correspond to the existence of periodic solutions that oscillate around the equilibria at given thresholds. Further, we show how the delay can result in more HIV infections causing more increase in the HIV prevalence. Part of this study is then extended to study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out for this model. Robust numerical methods are then designed and analyzed for these models. Comparative numerical results are also provided for each model.
|
8 |
Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infectionElsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
Philosophiae Doctor - PhD / There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them. / South Africa
|
9 |
Mathematical Analysis of an SEIRS Model with Multiple Latent and Infectious Stages in Periodic and Non-periodic EnvironmentsMelesse, Dessalegn Yizengaw 30 August 2010 (has links)
The thesis focuses on the qualitative analysis of a general class of SEIRS models in periodic and non-periodic environments. The classical SEIRS model, with standard incidence function, is, first of all, extended to incorporate multiple infectious stages. Using Lyapunov function theory and LaSalle's Invariance Principle, the disease-free equilibrium (DFE) of the resulting SEI<sup>n</sup>RS model is shown to be globally-asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, this model has a unique endemic equilibrium point (EEP), which is shown (using a non-linear Lyapunov function of Goh-Volterra type) to be globally-asymptotically stable for a special case. The SEI<sup>n</sup>RS model is further extended to incorporate arbitrary number of latent stages. A notable feature of the resulting SE<sup>m</sup>I<sup>n</sup>RS model is that it uses gamma distribution assumptions for the average waiting times in the latent (m) and infectious (n) stages. Like in the case of the SEI<sup>n</sup>RS model, the SE<sup>m</sup>I<sup>n</sup>RS model also has a globally-asymptotically stable DFE when its associated reproduction threshold is less than unity, and it has a unique EEP (which is globally-stable for a special case) when the threshold exceeds unity. The SE<sup>m</sup>I<sup>n</sup>RS model is further extended to incorporate the effect of periodicity on the disease transmission dynamics. The resulting non-autonomous SE<sup>m</sup>I<sup>n</sup>RS model is shown to have a globally-stable disease-free solution when the associated reproduction ratio is less than unity. Furthermore, the non-autonomous model has at least one positive (non-trivial) periodic solution when the reproduction ratio exceeds unity. It is shown (using persistence theory) that, for the non-autonomous model, the disease will always persist in the population whenever the reproduction ratio is greater than unity. One of the main mathematical contributions of this thesis is that it shows that adding multiple latent and infectious stages, gamma distribution assumptions (for the average waiting times in these stages) and periodicity to the classical SEIRS model (with standard incidence) does not alter the main qualitative dynamics (pertaining to the persistence or elimination of the disease from the population) of the SEIRS model.
|
10 |
Mathematical Analysis of an SEIRS Model with Multiple Latent and Infectious Stages in Periodic and Non-periodic EnvironmentsMelesse, Dessalegn Yizengaw 30 August 2010 (has links)
The thesis focuses on the qualitative analysis of a general class of SEIRS models in periodic and non-periodic environments. The classical SEIRS model, with standard incidence function, is, first of all, extended to incorporate multiple infectious stages. Using Lyapunov function theory and LaSalle's Invariance Principle, the disease-free equilibrium (DFE) of the resulting SEI<sup>n</sup>RS model is shown to be globally-asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, this model has a unique endemic equilibrium point (EEP), which is shown (using a non-linear Lyapunov function of Goh-Volterra type) to be globally-asymptotically stable for a special case. The SEI<sup>n</sup>RS model is further extended to incorporate arbitrary number of latent stages. A notable feature of the resulting SE<sup>m</sup>I<sup>n</sup>RS model is that it uses gamma distribution assumptions for the average waiting times in the latent (m) and infectious (n) stages. Like in the case of the SEI<sup>n</sup>RS model, the SE<sup>m</sup>I<sup>n</sup>RS model also has a globally-asymptotically stable DFE when its associated reproduction threshold is less than unity, and it has a unique EEP (which is globally-stable for a special case) when the threshold exceeds unity. The SE<sup>m</sup>I<sup>n</sup>RS model is further extended to incorporate the effect of periodicity on the disease transmission dynamics. The resulting non-autonomous SE<sup>m</sup>I<sup>n</sup>RS model is shown to have a globally-stable disease-free solution when the associated reproduction ratio is less than unity. Furthermore, the non-autonomous model has at least one positive (non-trivial) periodic solution when the reproduction ratio exceeds unity. It is shown (using persistence theory) that, for the non-autonomous model, the disease will always persist in the population whenever the reproduction ratio is greater than unity. One of the main mathematical contributions of this thesis is that it shows that adding multiple latent and infectious stages, gamma distribution assumptions (for the average waiting times in these stages) and periodicity to the classical SEIRS model (with standard incidence) does not alter the main qualitative dynamics (pertaining to the persistence or elimination of the disease from the population) of the SEIRS model.
|
Page generated in 0.1122 seconds