• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Analysis of Dynamics of Chlamydia trachomatis

Sharomi, Oluwaseun Yusuf 09 September 2010 (has links)
Chlamydia, caused by the bacterium Chlamydia trachomatis, is one of the most important sexually-transmitted infections globally. In addition to accounting for millions of cases every year, the disease causes numerous irreversible complications such as chronic pelvic pain, infertility in females and pelvic inflammatory disease. This thesis presents a number of mathematical models, of the form of deterministic systems of non-linear differential equations, for gaining qualitative insight into the transmission dynamics and control of Chlamydia within an infected host (in vivo) and in a population. The models designed address numerous important issues relating to the transmission dynamics of Chlamydia trachomatis, such as the roles of immune response, sex structure, time delay (in modelling the latency period) and risk structure (i.e., risk of acquiring or transmitting infection). The in-host model is shown to have a globally-asymptotically stable Chlamydia-free equilibrium whenever a certain biological threshold is less than unity. It has a unique Chlamydia-present equilibrium when the threshold exceeds unity. Unlike the in-host model, the two-group (males and females) population-level model undergoes a backward bifurcation, where a stable disease-free equilibrium co-exists with one or more stable endemic equilibria when the associated reproduction number is less than unity. This phenomenon, which is shown to be caused by the re-infection of recovered individuals, makes the effort to eliminate the disease from the population more difficult. Extending the two-group model to incorporate risk structure shows that the backward bifurcation phenomenon persists even when recovered individuals do not acquire re-infection. In other words, it is shown that stratifying the sexually-active population in terms of risk of acquiring or transmitting infection guarantees the presence of backward bifurcation in the transmission dynamics of Chlamydia in a population. Finally, it is shown (via numerical simulations) that a future Chlamydia vaccine that boosts cell-mediated immune response will be more effective in curtailing Chlamydia burden in vivo than a vaccine that enhances humoral immune response. The population-level impact of various targeted treatment strategies, in controlling the spread of Chlamydia in a population, are compared. In particular, it is shown that the use of treatment could have positive or negative population-level impact (depending on the sign of a certain epidemiological threshold).
2

Mathematical Analysis of Dynamics of Chlamydia trachomatis

Sharomi, Oluwaseun Yusuf 09 September 2010 (has links)
Chlamydia, caused by the bacterium Chlamydia trachomatis, is one of the most important sexually-transmitted infections globally. In addition to accounting for millions of cases every year, the disease causes numerous irreversible complications such as chronic pelvic pain, infertility in females and pelvic inflammatory disease. This thesis presents a number of mathematical models, of the form of deterministic systems of non-linear differential equations, for gaining qualitative insight into the transmission dynamics and control of Chlamydia within an infected host (in vivo) and in a population. The models designed address numerous important issues relating to the transmission dynamics of Chlamydia trachomatis, such as the roles of immune response, sex structure, time delay (in modelling the latency period) and risk structure (i.e., risk of acquiring or transmitting infection). The in-host model is shown to have a globally-asymptotically stable Chlamydia-free equilibrium whenever a certain biological threshold is less than unity. It has a unique Chlamydia-present equilibrium when the threshold exceeds unity. Unlike the in-host model, the two-group (males and females) population-level model undergoes a backward bifurcation, where a stable disease-free equilibrium co-exists with one or more stable endemic equilibria when the associated reproduction number is less than unity. This phenomenon, which is shown to be caused by the re-infection of recovered individuals, makes the effort to eliminate the disease from the population more difficult. Extending the two-group model to incorporate risk structure shows that the backward bifurcation phenomenon persists even when recovered individuals do not acquire re-infection. In other words, it is shown that stratifying the sexually-active population in terms of risk of acquiring or transmitting infection guarantees the presence of backward bifurcation in the transmission dynamics of Chlamydia in a population. Finally, it is shown (via numerical simulations) that a future Chlamydia vaccine that boosts cell-mediated immune response will be more effective in curtailing Chlamydia burden in vivo than a vaccine that enhances humoral immune response. The population-level impact of various targeted treatment strategies, in controlling the spread of Chlamydia in a population, are compared. In particular, it is shown that the use of treatment could have positive or negative population-level impact (depending on the sign of a certain epidemiological threshold).
3

Probing the experiences of women within the practice of "Gonyalelwa lapa' among BaSotho ba Lebowa' Ga-Masemola Area Sekhukhune District, Makhudumathaga Municipality, Limpopo Province South Africa

Kabekwa, Mmoledi 18 September 2017 (has links)
MGS / Institute for Gender and Youth Studies / ‘Gonyalelwa lapa’ is a form of a marriage whereby a family marries a woman to a deceased son who passed on without having biological children, for the purpose of restoring or reviving the deceased’s name. The woman is married with her existing children, or to bear children who will take the surname of the deceased man. Women find it difficult to leave such marriages for the fear of losing their children whom they signed off by accepting to be married under this type of marriage. This study employs the feminist standpoint methodological approach in order to explore experiences of women who are married for ‘lapa’. The study purposefully selected a sample of 8 women who are married under ‘Gonyalelwa lapa’ as well as 4 key informants. Findings demonstrate that women marry for ‘lapa’ mainly for economic reasons, to escape stigmatization, for the acquisition of the marital surname, which is tied to being acknowledged, respected and recognized by the community. Nevertheless, these women face multidimensional challenges within their in-laws’ households: they receive no support from the inlaws; their girl-children suffer discrimination based on ‘sex-preference’, boys are given more value on the basis that a boy will be able to perpetuate a deceased man’s name. Most women married under this type of marriage suffer from emotional and economic abuse at the hands of their in-laws. The study reveals that these challenges are attributed to lack of physical presence of the husband in the family. The study recommends that a large scale study be conducted on this or related topic, to build knowledge and create an awareness of such a marriage as to facilitate its inclusion in Customary Marriage Act.
4

The influence of conflicting role obligations on nontraditional student baccalaureate degree attainment

Guastella, Rosaria 20 December 2009 (has links)
The purpose of this research study was to investigate the phenomenon of the conflicting roles, such as parent, spouse, employee, caregiver, and community member/volunteer, associated with the lives of nontraditional college students and to reveal how these conflicting role obligations influence these students' persistence toward the attainment of an undergraduate degree. This study provides a brief history of adult education in the United States as well as the study context, a continuing studies division of a privately endowed research institution located in the southern United States. The participants in this study were nontraditional students who were also recent graduates of this continuing studies unit. This study drew upon the literature of nontraditional students in higher education, as well as literature on role theory, adult development theory, adult learning theory, and student persistence theory. This study used a phenomenological qualitative approach as a means of discovering the lived experiences of nontraditional students as these experiences relate to the conflicting roles of nontraditional students and their decision to persist toward the attainment of a bachelor's degree. Several important findings were discovered. In order to negotiate their conflicting roles, these students used several strategies as a means of helping them to balance their roles. This study also found several motivational factors that prompted nontraditional students to pursue a bachelor's degree at this time in their lives. The obstacles and challenges that these students confronted were also revealed, and in order to overcome these obstacles and challenges these students relied on several support systems. The reputation and prestige of this university was also found to be an important factor in the students' decision to attend college at this stage in their lives. Additionally, the various forms of assistance that this continuing studies unit provided encouraged students to persist.
5

Mathematical Analysis of an SEIRS Model with Multiple Latent and Infectious Stages in Periodic and Non-periodic Environments

Melesse, Dessalegn Yizengaw 30 August 2010 (has links)
The thesis focuses on the qualitative analysis of a general class of SEIRS models in periodic and non-periodic environments. The classical SEIRS model, with standard incidence function, is, first of all, extended to incorporate multiple infectious stages. Using Lyapunov function theory and LaSalle's Invariance Principle, the disease-free equilibrium (DFE) of the resulting SEI<sup>n</sup>RS model is shown to be globally-asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, this model has a unique endemic equilibrium point (EEP), which is shown (using a non-linear Lyapunov function of Goh-Volterra type) to be globally-asymptotically stable for a special case. The SEI<sup>n</sup>RS model is further extended to incorporate arbitrary number of latent stages. A notable feature of the resulting SE<sup>m</sup>I<sup>n</sup>RS model is that it uses gamma distribution assumptions for the average waiting times in the latent (m) and infectious (n) stages. Like in the case of the SEI<sup>n</sup>RS model, the SE<sup>m</sup>I<sup>n</sup>RS model also has a globally-asymptotically stable DFE when its associated reproduction threshold is less than unity, and it has a unique EEP (which is globally-stable for a special case) when the threshold exceeds unity. The SE<sup>m</sup>I<sup>n</sup>RS model is further extended to incorporate the effect of periodicity on the disease transmission dynamics. The resulting non-autonomous SE<sup>m</sup>I<sup>n</sup>RS model is shown to have a globally-stable disease-free solution when the associated reproduction ratio is less than unity. Furthermore, the non-autonomous model has at least one positive (non-trivial) periodic solution when the reproduction ratio exceeds unity. It is shown (using persistence theory) that, for the non-autonomous model, the disease will always persist in the population whenever the reproduction ratio is greater than unity. One of the main mathematical contributions of this thesis is that it shows that adding multiple latent and infectious stages, gamma distribution assumptions (for the average waiting times in these stages) and periodicity to the classical SEIRS model (with standard incidence) does not alter the main qualitative dynamics (pertaining to the persistence or elimination of the disease from the population) of the SEIRS model.
6

Mathematical Analysis of an SEIRS Model with Multiple Latent and Infectious Stages in Periodic and Non-periodic Environments

Melesse, Dessalegn Yizengaw 30 August 2010 (has links)
The thesis focuses on the qualitative analysis of a general class of SEIRS models in periodic and non-periodic environments. The classical SEIRS model, with standard incidence function, is, first of all, extended to incorporate multiple infectious stages. Using Lyapunov function theory and LaSalle's Invariance Principle, the disease-free equilibrium (DFE) of the resulting SEI<sup>n</sup>RS model is shown to be globally-asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, this model has a unique endemic equilibrium point (EEP), which is shown (using a non-linear Lyapunov function of Goh-Volterra type) to be globally-asymptotically stable for a special case. The SEI<sup>n</sup>RS model is further extended to incorporate arbitrary number of latent stages. A notable feature of the resulting SE<sup>m</sup>I<sup>n</sup>RS model is that it uses gamma distribution assumptions for the average waiting times in the latent (m) and infectious (n) stages. Like in the case of the SEI<sup>n</sup>RS model, the SE<sup>m</sup>I<sup>n</sup>RS model also has a globally-asymptotically stable DFE when its associated reproduction threshold is less than unity, and it has a unique EEP (which is globally-stable for a special case) when the threshold exceeds unity. The SE<sup>m</sup>I<sup>n</sup>RS model is further extended to incorporate the effect of periodicity on the disease transmission dynamics. The resulting non-autonomous SE<sup>m</sup>I<sup>n</sup>RS model is shown to have a globally-stable disease-free solution when the associated reproduction ratio is less than unity. Furthermore, the non-autonomous model has at least one positive (non-trivial) periodic solution when the reproduction ratio exceeds unity. It is shown (using persistence theory) that, for the non-autonomous model, the disease will always persist in the population whenever the reproduction ratio is greater than unity. One of the main mathematical contributions of this thesis is that it shows that adding multiple latent and infectious stages, gamma distribution assumptions (for the average waiting times in these stages) and periodicity to the classical SEIRS model (with standard incidence) does not alter the main qualitative dynamics (pertaining to the persistence or elimination of the disease from the population) of the SEIRS model.

Page generated in 0.0823 seconds