• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation and experimental investigations of two-phase flow in singularities / Etudes expérimentales et numérique du écoulement diphasique en singularités

Zhou, Chengsi 12 July 2017 (has links)
Une étude numérique et des investigations expérimentales sont menées sur une bulle de Taylor ascendante au passage d’une contraction ou d’un élargissement brusque dans un liquide Newtonien stagnant. Le code CFD est issu du logiciel libre Gerris utilisant la méthode VOF (Volume Of Fluid) pour représenter l’interface liquide-gaz. La méthode numérique est vérifiée en utilisant les résultats existants sur des bulles de Taylor ascendantes dans des colonnes droites. L’étude expérimentale permet d’étudier une bulle d’azote dans un mélange eau-glycérol pour différentes concentrations. Le rapport des diamètres de la conduite varie de 0,69 à 1,72. Les images de la bulle montante dans les singularités sont capturées par une caméra haute vitesse. Les variations de vitesse de la bulle et de l’épaisseur du film liquide sont étudiées. Les résultats montrent que l’élargissement brusque avec un rapport de diamètres plus élevé entraîne plus de perturbations sur la bulle avec de forts effets sur sa queue. Les queues de bulles instables sont coupées en petites bulles dans certains cas et une carte d’écoulement permet de le prédire. En outre, il a été observé que les variations de la forme de la bulle dépendent de la longueur des bulles. En ce qui concerne la bulle passant par une contraction, le phénomène de blocage a été observé et une carte de prédiction a été proposée. Finalement, cette étude, basée sur un intervalle assez large du nombre d’Eötvös et du rapport de diamètres, propose de nouvelles connaissances pour mieux comprendre l’ascension d’une bulle de Taylor dans les singularités. / Numerical simulations and experimental investigations of rising individual Taylor bubble through a vertical sudden expansion and contraction in stagnant Newtonian liquid is presented. The CFD procedure is based on the open source package Gerris which adopts the volume-of-fluid (VOF) method to represent the gas/liquid interface. The numerical method is verified using the existing results of single Taylor bubbles rising in straight columns. The experiments investigate a nitrogen bubble rising in a water-glycerol mixture for different concentrations. The pipe diameter ratio ranges from 0.69 to 1.72. The images of the bubble rising through the singularities are captured by a high-speed camera. Our investigations focus on the transient process of the bubbles passing the singularity. The variations of the bubble velocity and the liquid film thickness are investigated. The results show that the greater expansion ratios yield more perturbations on the bubbles and have strong effects on the tail of the bubble. The unstable bubble tails are cut off into smaller bubbles in some of the test cases and a bubble break-up regime map obtained by simulations has been proposed. The bubble shape variations depend also on the length of the bubbles. For a bubble passing through a contraction, the blocking phenomenon has been observed and a map has been proposed. Finally, this study, based on a large range of Eötvös numbers and expansion/contraction ratios, provides new insights to better understand the effect of singularities on rising Taylor bubbles.
2

Oscillating grid turbulence and its influence on gas liquid mass transfer and mixing in non-Newtonian media / La turbulence de grille oscillante et son influence sur le transfert de masse gaz-liquide et le mélange en milieu non newtonien

Lacassagne, Tom 30 November 2018 (has links)
L’étude du transfert de masse turbulent aux interfaces gaz-liquide est d’un grand intérêt dans de nombreuses applications environnementales et industrielles. Bien que ce problème soit étudié depuis de nombreuses années, sa compréhension n’est pas encore suffisante pour la création de modèles de transfert de masse réalistes (de type RANS ou LES sous maille), en particulier en présence d’une phase liquide à rhéologie complexe. Ce travail expérimental a pour but l’étude des aspects fondamentaux du transfert de masse turbulent à une interface plane horizontale entre du dioxyde de carbone gazeux et une phase liquide newtonienne ou non, agitée par une turbulence homogène quasi isotrope. Les milieux liquides non newtoniens étudiés sont des solutions aqueuses d’un polymère dilué à des concentrations variables et aux propriétés viscoélastiques et rhéofluidifiantes. Deux méthodes de mesure optiques permettant l’obtention du champ de vitesse de la phase liquide (SPIV) et de concentration du gaz dissout (I-PLIF) sont couplées tout en maintenant une haute résolution spatiale, afin de déduire les statistiques de vitesse et de concentration couplées dans les premiers millimètres sous la surface. Une nouvelle version de I-PLIF est développée pour les mesures en proche surface. Elle peut également s’appliquer dans différentes études de transfert de masse. La turbulence de fond est générée par un dispositif de grille oscillante. Les mécanismes de production et les caractéristiques de la turbulence sont étudiés. L’importance de la composante oscillante de la turbulence est discutée, et un phénomène d’amplification de l’écoulement moyen est mis en évidence. Les mécanismes du transfert de masse turbulent à l’interface sont finalement observés pour l’eau et une solution de polymère dilué à faible concentration. L’analyse conditionnelle des flux de masse turbulent permet de mettre en évidence les évènements contribuant au transfert de masse et de discuter de leur impact relatif sur le transfert total. / The study of turbulence induced mass transfer at the interface between a gas and a liquid is of great interest in many environmental phenomena and industrial processes. Even though this issue has already been studied for several decades, its understanding is still not good enough to create realistic models (RANS or sub-grid LES), especially when considering a liquid phase with a complex rheology. This experimental work aims at studying fundamental aspects of turbulent mass transfer at a flat interface between carbon dioxide and a Newtonian or non-Newtonian liquid, stirred by homogeneous and quasi isotropic turbulence. Non-Newtonian fluids studied are aqueous solutions of a model polymer, Xanthan gum (XG), at various concentrations, showing viscoelastic and shear-thinning properties. Optical techniques for the acquisition of the liquid phase velocity field (Stereoscopic Particle Image Velocimetry, SPIV) and dissolved gas concentration field (Inhibited Planar Laser Induced Fluorescence, I-PLIF) are for the first time coupled, keeping a high spatial resolution, to access velocity and concentration statistics in the first few millimetres under the interface. A new version of I-PLIF is developed. It is designed to be more efficient for near surface measurements, but its use can be generalized to other single or multiphase mass transfer situations. Bottom shear turbulence in the liquid phase is generated by an oscillating grid apparatus. The mechanisms of turbulence production and the characteristics of oscillating grid turbulence (OGT) are studied. The importance of the oscillatory component of turbulence is discussed. A mean flow enhancement effect upon polymer addition is evidenced. The mechanisms of turbulent mass transfer at a flat interface are finally observed in water and low concentration polymer solutions. A conditional analysis of turbulent mass fluxes allows to distinguish the type of events contributing to mass transfer and discuss their respective impact in water and polymer solutions.

Page generated in 0.012 seconds