• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The optical response of rectangular metallic gratings and metal/dielectric multilayers

Gadsdon, Martyn Richard January 2008 (has links)
The ability of periodic surface variations to influence and control the electromagnetic response of interfaces and structures has been recognised for many years. Concurrently with these investigations, it has been found that individual particles and wires support interesting electromagnetic resonances. It has also long been established that multi-layer structures of planar interfaces may also result in interesting electromagnetic responses. Multi-layer structures of alternating dielectrics have been shown to produce periodic transmission resonances, however, if one of the dielectrics is replaced with a thin metallic film, it has recently been demonstrated that wide band-pass regions are formed in the electromagnetic response of the structure. The work presented in this thesis can be considered to be separated into two distinct, but related, areas. One of the areas involves the analysis of wire grid arrays. It is demonstrated that, like the case of deep surface relief perturbations, the waveguide modes in the slits can be considered as the evolution of surface modes on shallow surface relief perturbations. The perturbation effects of the slits on the surface modes and the effect of their excitation on optically thick and thin wires are also investigated. Finally, a new electromagnetic resonance is presented on both 1-dimensional and 2-dimensional wire grid arrays. It is shown that this is closely related to the localised surface modes that have been shown to occur on individual particles and wires. However, the resonance presented is shown to be subtly different from these modes, which typically result in a transmission and reflection extinction, because the planar geometry of the wires and the periodicity result in a reflection enhancement, even when the wires are optically thin. The second area of this work may be separated into two distinct sub-sections. The first section examines the electromagnetic response of dielectric/metal multi-layer stacks. These are confirmed to exhibit a periodic series of broad band-pass regions, with the spectral location of these regions being dependent only on the unit cell, not the full extent of the structures. The location of each band-edge of these regions are then demonstrated to be a result of the matching of boundary conditions between standing waves in the cavities having either a cos or a sin standing wave function, and the evanescent fields inside the metal layers having either a sinh or a cosh field distribution. The second section examines the electromagnetic response of continuous surface relief gratings, with a rectangular cross-section, whose ridges are very thin. It is shown that vertical standing waves form, similar to the cavity waveguide modes, except with the fields coupled through the wires not across the grooves. These are then shown to reach a finite limit frequency as the grating height tends to infinity. Thus, the resonances have evolved into a different mode beyond a certain grating amplitude. This mode is shown to to be equivalent to the band-pass region described in multi-layer metal/dielectric stacks. However, scattering and periodicity considerations require that only the low frequency band-edge can be coupled to at normal incidence, while only the high frequency band-edge may be coupled to at grazing incidence.
2

Modeling of resonant optical nanostructures with semi-analytical methods based on the object eigenmodes / Modélisation de nanostructures optiques résonantes avec des méthodes semi-analytiques utilisant les modes propres de l'objet

Ovcharenko, Anton 20 December 2019 (has links)
Cette thèse est consacrée au développement de modèles semi-analytiques précis pour le calcul numérique de dispositifs nanophotoniques résonants. Il s'agit en particulier de membranes à cristaux photoniques, qui supportent des résonances avec des très grands facteurs de qualité, et d’ensembles composés de plusieurs nano-antennes plasmoniques, qui présentent des résonances avec des faibles facteurs de qualité. La thèse est divisée en deux parties.La première partie présente un modèle semi-analytique pour le calcul des modes supportés par des membranes à cristaux photoniques. Les modes à fuite (leaky modes) supportés par ces membranes structurées sont modélisés comme une résonance Fabry-Perot transverse composée de quelques ondes de Bloch propagatives qui vont et viennent verticalement à l'intérieur de la structure. Ce modèle est appliqué à l'étude des états liés dans le continuum (bound states in the continuum, ou BIC). Nous montrons que le modèle Fabry-Perot multimode est parfaitement adapté pour prédire l'existence des BICs ainsi que leur position dans l'espace des paramètres. Grâce à la semi-analyticité du modèle, nous étudions la dynamique des BICs avec l'épaisseur de la membrane pour des structures symétriques et asymétriques. Dans ce dernier cas, nous étudions des objets présentant soit une symétrie horizontale brisée, soit une symétrie verticale brisée (ajout d'un substrat). Le modèle Fabry-Perot nous permet d’obtenir des informations importantes sur la nature et le comportement des BICs. Nous démontrons que lorsque la symétrie miroir horizontale est brisée, les BICs dus à la symétrie du système, qui existent dans les structures symétriques au point Gamma du diagramme de dispersion, restent des BICs malgré l’absence de symétrie mais changent de nature. Ils deviennent des BICs dus à des interférences destructives entre les ondes de Bloch. La deuxième partie est consacrée au développement d'une théorie modale originale pour modéliser la diffusion de la lumière par des structures complexes composées d'un ensemble de plusieurs nano-antennes. L'objectif est de pouvoir modéliser la diffusion de la lumière par des métasurfaces à partir de la seule connaissance des modes de leurs constituants individuels. Pour ce faire, nous combinons un formalisme modal basé sur l’utilisation des modes quasi-normaux (QNM) avec la théorie multipolaire de la diffusion multiple basée sur le calcul de la matrice de transition (matrice T) d'un diffuseur unique. La matrice T fournit la relation entre le champ incident et le champ diffusé dans la base des harmoniques sphériques vectorielles. Elle contient toutes les propriétés de diffusion intrinsèques à l'objet. Le calcul de cette matrice représente une charge numérique lourde car elle nécessite de nombreux calculs rigoureux du champ diffusé. L'utilisation d'une décomposition modale avec des QNMs nous permet d’une part de rendre une partie du calcul analytique et d’autre part d'apporter une meilleure compréhension physique. Nous dérivons une décomposition modale de la matrice T et testons sa précision sur le cas de référence d'une nanosphère métallique.Enfin, la décomposition modale de la matrice T est appliquée à des cas pratiques d'intérêt en nanophotonique. A partir de la seule connaissance de quelques modes d'un nanocylindre plasmonique unique, nous calculons analytiquement la diffusion multiple de la lumière par un dimère et par une antenne Yagi-Uda composés de ces nanocylindres. Nous appliquons également l’approche modale à un réseau périodique bidimensionnel de nanocylindres . La comparaison avec les résultats d'une méthode numérique rigoureuse démontre un bon accord avec le calcul modal. Par rapport à des calculs entièrement rigoureux, la décomposition modale de la matrice T permet une réduction significative du temps de calcul. Comme les calculs sont analytiques une fois que les modes ont été calculés, l'approche modale est extrêmement utile pour les problèmes d'optimisation. / The presented thesis is dedicated to the development of semi-analytical accurate models for the numerical calculation of resonant nanophotonic devices. In particular, it concerns photonic crystal slabs, which can support resonances with high quality factors, and ensembles composed of several plasmonic nanoantennas, which exhibit resonances with low quality factors. The structure of the thesis is two-fold. In the first part, a semi-analytical model for the calculation of the modes supported by photonic crystal slabs (their dispersion and quality factors) is presented. Leaky modes supported by photonic crystal slabs are modeled as a transverse Fabry-Perot resonance composed of a few propagative Bloch waves bouncing back and forth vertically inside the slab. This model is applied to the study of bound states in the continuum (BICs). We show that the multimode Fabry-Perot model is perfectly suitable to predict the existence of BICs as well as their precise positions in the parameter space. We show that, regardless of the slab thickness, BICs cannot exist below a cut-off frequency, which is related to the existence of the second-order Bloch wave in the photonic crystal. Thanks to the semi-analyticity of the model, we investigate the dynamics of BICs with the slab thickness in symmetric and asymmetric photonic crystal slab. In the latter case, we investigate structures with either a broken horizontal symmetry or a broken vertical symmetry (addition of a substrate). As a result, we obtain some important insights into the nature and behavior of BICs. We evidence that, as the horizontal mirror symmetry is broken, the symmetry-protected BICs that exist in symmetric structures at the Gamma-point of the dispersion diagram are still BICs despite the absence of symmetry but change their nature. They become resonance-trapped BICs, but only for specific values of the slab thickness.The second part of the thesis is dedicated to the development of an original modal theory to model light scattering by complex structures composed of a small ensemble of plasmonic nanoantennas. The objective is to be able to model light scattering by metasurfaces from the sole knowledge of the eigenmodes of their individual constituents. For that purpose, we combine a quasi-normal mode (QNM) formalism with the multipole multiple-scattering theory based on the calculation of the so-called transition matrix (T-matrix) of a single scatterer. The T-matrix provides the relation between the incident and scattered fields in the vectorial spherical harmonics basis. It captures all the intrinsic scattering properties of the object that are due to its shape and refractive index distribution. Computation of the T-matrix is a heavy numerical burden since it requires numerous rigorous calculations of the scattered field— one for each harmonic in the basis. Using a modal expansion of the scattered field with QNMs allows us to bring both analyticity and physical understanding into the calculation. We derive a modal expansion of the T-matrix and test its accuracy on the reference case of a metallic nanosphere.Finally, we apply the modal expansion of the T-matrix to practical cases of interest in nanophotonics. From the sole knowledge of a few modes of a single plasmonic nanorod, we calculate analytically multiple light scattering by a dimer and a Yagi-Uda antenna composed of these nanorods. We apply also the modal approach to a periodic two-dimensional array of nanorods. Comparison with the results of a rigorous Maxwell’s equations solver demonstrates a good agreement with the QNM-based calculation. Compared to fully rigorous calculations, the QNM expansion of the T-matrix allows for a significant reduction of the computation time. Since the calculations are analytical once the modes have been calculated, the QNM approach is extremely useful for optimization problems.
3

Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons with resonant nanoantennas / Excitation électrique de plasmons polaritons de surface par effet tunnel inélastique avec des nanoantennes résonnantes

Zhang, Cheng 24 May 2019 (has links)
Les plasmons polaritons de surface (SPPs) jouent un rôle central en nanophotonique, parce que ce sont des modes optiques qui peuvent être confinés dans l’espace à l’échelle de 10 nm et dans le temps à l’échelle de 10 fs. L’excitation électrique des plasmons polaritons de surface par effet tunnel inélastique peut être ultrarapide et localisée, ce qui permet de développer une nanosource pour la nanophotonique intégrée en profitant pleinement du potentiel des polaritons plasmon de surface. Pourtant, ce processus est très inefficace avec un rendement de conversion typique de 10-7~10-5 plasmon par électron.Dans ce manuscrit de thèse, nous présentons une étude théorique et expérimentale qui vise à augmenter l’émission de plasmons de surface par effet tunnel inélastique avec une nano-antenne résonante. Nous avons développé un modèle théorique pour décrire l’émission de lumière à partir d’une jonction à effet tunnel en utilisant le théorème de fluctuation-dissipation. Nous proposons deux stratégies pour augmenter le rendement de conversion électron-plasmon. Nous introduisons un mode d’antenne résonnante confiné à l’échelle du nanomètre afin de renforcer le couplage entre le courant et le champ. En outre, nous introduisons l’hybridation d’un mode plasmonique metal/isolant/metal confiné et d’un mode d’antenne. Nous prédisons théoriquement que 30% de l’énergie émise par un dipôle est sous forme de SPP pour une longueur d’onde de travail de 800nm et une épaisseur d’isolant de 1 nm.Nous avons développé les processus de fabrication pour réaliser les antennes à effet tunnel en utilisant la configuration Al/AlOx/Au. L’antenne fabriquée présente une fonctionnalité robuste concernant les propriétés électriques et optiques. Nous montrons l’antenne permet de contrôler le spectre d’émission SPP, la polarisation d’émission SPP et renforcer l’efficacité des émissions de SPP de plus de 3 ordres de grandeur. La puissance totale émise sous forme de SPP est de l’ordre de 10 pW, quatre ordres de grandeur de plus que la puissance typique émise par une pointe de microscope à effet tunnel. / Surface plasmon polaritons (SPPs) plays a central role in nanophotonics because they are optical modes that can be confined in space at the 10 nm scale and in time at the 10 fs scale. Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons has the potential to be fast and localized so that it offers the opportunity to develop a nanosource for on-chip nanophotonics taking advantage of the full potential of surface plasmons polaritons. However, inelastic tunneling is rather inefficient with a typical electron-to-plasmon conversion efficiency of 10-7~10-5. In this thesis manuscript, we present a study for enhancing surface plasmon emission by inelastic tunneling electrons with a resonant nanoantenna. It consists of theoretical and experimental investigations. First, we have developed a theoretical model to describe the light emission from a tunnel junction based on the fluctuation-dissipation theorem. Second, we have theoretically demonstrated two strategies to improve the antenna SPP efficiency thus aiming to enhance electron-to-plasmon conversion efficiency. We introduce a resonant antenna mode with a sub-nanometer gap in order to enhance the coupling between the inelastic current and the the mode. Furthermore, we introduce the hybridization in a nanopatch antenna between a gap mode and an antenna mode to launch SPPs: we theoretically predict that 30% of the power emitted by a dipole is converted into SPP (working wavelength at 800nm) with a 1nm gap thickness. Third, we have developed the fabrication procedures to realize antenna tunnel junctions based on the Al/AlOx/Au configuration. The fabricated antenna junction shows a robust functionality both regarding electrical and optical properties. The antenna junction is demonstrated to control the SPP emission spectrum, the SPP emission polarization and enhance the SPP emission efficiency by over 3 orders of magnitude. The total SPP power emitted is in the range of 10 pW, four orders of magnitude larger than the typical fW power emitted by a scanning tunneling tip junction.

Page generated in 0.0164 seconds