Spelling suggestions: "subject:"537 elektrizität und elektronik"" "subject:"537 elektrizität und avelektronik""
1 |
Metal Halide Perovskites: Photophysics and Inkjet Printing of Solar CellsNandayapa Bermudez, Edgar Ricardo 10 August 2021 (has links)
Metallhalogenid-Perowskite (MHPs) sind Halbleiter, die einzigartige photophysikalische Eigenschaften aufweisen, die sie ideal für photovoltaische Anwendungen machen. Techniken werden kontinuierlich entwickelt, um die Leistungsgrenzen der Perowskite weiter zu verschieben. Dennoch weisen diese Materialien verschiedene Herausforderungen auf. Zu diesen gehören eine geringe Stabilität unter einer Vielzahl von äußeren Bedingungen, sowie eine große Diskrepanz zwischen den Wirkungsgraden von Geräten im Labormaßstab und großflächigen Geräten.
Zunächst wurden mit Hilfe von Photolumineszenz-Spektroskopie Ladungsübertragungsmechanismen zwischen MHPs und atmosphärischen Gasen untersucht, um deren Einfluss auf die Materialstabilität zu bestimmen. Durch den Vergleich der Emission von verschiedene MHP wurde die Wirkung untersucht, die atmosphärische Gase auf Grenzdefekte im Material haben. Diese Löschungseffekte wurden nachfolgend mit dem Stern-Volmer-Modell analysiert. Es stellte sich heraus, dass ein Teil von der Gase bindet jedoch an die MHPs, wobei teilweise Kristalldefekte passiviert werden und für jedes der Gase Ladungstransfermechanismen vorgeschlagen wurden.
Zweitens wurde die Skalierung von MHP-Bauelementen mittels Tintenstrahldruck untersucht. Dazu wurden drei Kristallisationstechniken ausgewertet. Eine davon verwendete eine sequenzielle Abscheidung von zwei Präkursortinten, während die beiden anderen kristallisierte Tinten verwendeten, die in einem Schritt abgeschieden wurden. Die letztgenannten Techniken verwendeten beide niedrige Drücke und bei einer wurde ein kontrollierter Stickstoffstrom auf die Probe angewendet. Solarzellen mit einer Effizienz von 16,8% auf einer Fläche von 0,16 cm² wurden demonstriert.
Diese Ergebnisse zeigen ein neuartiges Verfahren zur Untersuchung von strahlungslosen Verlustwegen in MHPs auf. Zusätzlich demonstrieren diese Studien, dass der Tintenstrahldruck eine geeignete Technologie ist, um MHP-Bauelemente zu skalieren. / Metal halide perovskites (MHPs) are semiconductor materials that show unique photophysical properties, making them ideal for photovoltaic applications. Having shown power conversion efficiencies of up to 25.5%, techniques are continuously being developed to push perovskites to unprecedent limits. Yet, these materials present challenges like a low stability under a variety of conditions as well as a large disparity between the efficiencies of lab scale and large area devices. This thesis addresses these two major obstacles.
First, charge transfer mechanisms between MHPs and atmospheric gases were studied to determine their effect on the material stability by using photoluminescence spectroscopy. By comparing the emission of MHPs, the effect that molecular oxygen, nitrogen, argon, and water have on boundary defects in the material was studied. These quenching effects were later analyzed using the Stern-Volmer model. It was found that the gases bounce off the surface, but a portion of them bind to the MHPs, in occasions passivating defects on the crystals. Using these results, charge transfer mechanisms were proposed for each one of the gases.
Second, scaling of MHP devices was examined using inkjet printing. For this, three crystallization techniques were evaluated. One of them used sequential deposition of two precursor inks, while the other two crystallized ink that was deposited in one step. Both latter techniques used low pressures, below 1 mbar, and only one of them applied a controlled stream of nitrogen to the sample. Using these techniques, the deposition of a 15x15 cm² area as well as a device with an efficiency of 16.8% on an area of 0.16 cm² were demonstrated.
These results show a novel procedure to study non-radiative loss paths in MHPs to enhance their stability and performance as devices. Also, they show that inkjet printing is a favorable technology to scale MHP devices and eventually facilitate the mass production of this type of photovoltaic devices.
|
2 |
Radio frequency ranging for precise indoor localizationSark, Vladica 15 February 2018 (has links)
In den letzten Jahrzehnten sind Satellitennavigationssysteme zu einem unverzichtbaren Teil des modernen Lebens geworden. Viele innovative Anwendungen bieten ortsabhängige Dienste an, welche auf diesen Navigationssystemen aufbauen. Allerdings sind diese Dienste in Innenräumen nicht verfügbar. Daher werden seit einigen Jahren alternative Lokalisierungsmethoden für Innenräume aktiv erforscht und entwickelt.
Der Schwerpunkt dieser Arbeit liegt darauf, die Genauigkeit von Lokalisationsmethoden in Innenräumen zu erhöhen, sowie auf der effektiven Integration der entsprechenden Verfahren in drahtlose Kommunikationssysteme. Es werden zwei Ansätze vorgeschlagen und untersucht, welche die Präzision von ToF-basierten Methoden erhöhen. Zum einen wird im „Modified Equivalent Time Sampling“ (METS) Verfahren eine überabgetastete Version der vom Radioempfänger gelieferten Wellenform erzeugt und zur ToF Bestimmung verwendet. Der zweite erforschte Ansatz hat zum Ziel, Fehler auf Grund von Taktfrequenz-Abweichungen zu kompensieren. Dieses ist für kooperative Lokalisationsmethoden (N-Way ranging) von Bedeutung. Das in der Arbeit entwickelte Verfahren führt zu einer erheblichen Reduzierung der Fehler in der Abstandsmessung und damit der Positionsbestimmung.
Darüber hinaus wurde eine neue Methode untersucht, um Lokalisationsverfahren in Funksysteme für die ISM Bänder bei 2,4 GHz und 5 GHz zu integrieren. Die Methode wurde auf einer Software Defined Radio (SDR) Plattform implementiert und bewertet. Es konnte eine Genauigkeit bis zu einem Meter in der Positionsbestimmung demonstriert werden. Schließlich wurde ein Verfahren vorgeschlagen und untersucht, mit welchem Lokalisationsfähigkeit in bestehende Funksysteme integriert werden kann. Die betrachtete Methode wurde in einem 60 GHz Funksystem mit hoher Datenrate implementiert. Die Untersuchungen zeigten eine Positionsgenauigkeit von 1 cm bei einer gleichzeitig hohen Datenrate für die Übertragung von Nutzdaten. / In the last couple of decades the Global Navigation Satellite Systems (GNSS) have become a very important part of our everyday life. A huge number of applications offer location based services and navigation functions which rely on these systems. Nevertheless, the offered localization services are not available indoors and their performance is significantly affected in urban areas. Therefore, in the recent years, a large number of wireless indoor localization systems are being actively investigated and developed.
The main focus of this work is on improving precision and accuracy of indoor localization systems, as well as on the implementation and integration of localization functionality in wireless data transmission systems. Two approaches for improving the localization precision and accuracy of ToF based methods are proposed. The first approach, referred to as modified equivalent time sampling (METS) is used to reconstruct an oversampled versions of the waveforms acquired at the radio receiver and used for ToF based localization. The second proposed approach is used to compensate the ranging error due to clock frequency offset in cooperative localization schemes like N-Way ranging. This approach significantly reduces the ranging and, therefore, localization errors and has much better performance compared to the existing solutions.
An approach for implementation of localization system in the 2.4/5 GHz ISM band is further proposed in this work. This approach is implemented and tested on a software defined radio platform. A ranging precision of better than one meter is demonstrated. Finally, an approach for integrating localization functionality into an arbitrary wireless data transmission system is proposed. This approach is implemented in a 60 GHz wireless system. A ranging precision of one centimeter is demonstrated.
|
Page generated in 0.0559 seconds