• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 387
  • 50
  • 45
  • 43
  • 15
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 712
  • 331
  • 138
  • 138
  • 138
  • 114
  • 77
  • 76
  • 71
  • 67
  • 59
  • 58
  • 56
  • 55
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Bi-Annual Report 2007/08 - Rossendorf Beamline at ESRF (ROBL-CRG)

Scheinost, A. 09 September 2010 (has links) (PDF)
The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 6th report covers the period from January 2007 to December 2008. In these two years, 50 peerreviewed papers have been published based on experiments done at the beamline. The average citation index, which increased constantly over the years, has now reached 3.5 (RCH) and 3.0 (MRH), indicating that papers are predominately published in journals with high impact factors. Six exemplary highlight reports on the following pages should demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). Demand for beamtime remains very high as in the previous years, with an average oversubscription rate of 1.8 for ESRF experiments. The attractiveness of our beamline is based upon the high specialization of its two end-stations. RCH is one of only two stations in Europe dedicated to x-ray absorption spectroscopy of actinides and other radionuclides. The INE beamline at ANKA provides superior experimental flexibility and extends to lower energies, including important elements like P and S. In contrast, ROBL-RCH provides a much higher photon flux, hence lower detection limits crucial for environmental samples, and a higher energy range extending to elements like Sb and I. Therefore, both beamlines are highly complementary, covering different aspects of radiochemistry research. Once the MARS beamline at SOLEIL is ready to run radionuclides (>2010), it will cover a third niche (Materials Science of actinides, including irradiated fuel) not accessible for the two other beamlines. The Materials Research Hutch MRH has realized an increasing number of in-situ investigations in the last years. On the one hand thin film systems were characterized during magnetron sputtering. On the other hand diffraction experiments under controlled atmosphere were performed. A high variety of experimental parameters was covered by varying pressure, temperature and atmospheric compositions including highly reactive gases. Furthermore structural investigations were combined with electrical conductivity measurements. These kind of in-situ experiments are the key to monitor and understand reaction mechanism or the influence of process parameters, which are again the basis to tailor materials properties on demand. The core competences of MRH are these experimental possibilities, which make it unique among other diffraction beamlines. In fall 2007, ROBL was reviewed by an international panel on behalf of the ESRF. The very positive panel report recommended a renewal of the contract between ESRF and FZD for the next five years, and a major upgrade of critical optical components of the beamline to keep ROBL competitive for the next decade. The FZD will provide 2 Mio € from 2009 to 2011 for this upgrade, which will be performed in parallel to the major upgrade of the ESRF to minimize the downtime. According to the current plans of the ESRF, our users have to expect that ROBL will have only limited or no operation for several months from August 2011 on. Since July 2004 the beamline is a member of the pooled facilities of ACTINET – European Network of Excellence. In the reported period, RCH has provided 27 % of its inhouse beamtime to perform 11 ACTINET experiments. The success of ACTINET within FP-6 has now led to a renewal of ACTINET within FP-7, running until end of 2011.
112

Step edge Josephson junctions and high temperature superconducting quantum interference device (SQUID) gradiometers

Millar, Alasdair J. January 2002 (has links)
This thesis is concerned with the development of Superconducting Quantum Interference Device (SQUID) gradiometers based on the high temperature superconductor YBa2Cu3O7-o (YBCO). A step-edge Josephson junction fabrication process was developed to produce sufficiently steep (> 60°) step-edges such that junctions exhibited RSJ-like current-voltage characteristics. The mean I(RN product of a sample of twenty step-edge junctions was 130jtV. Step-edge dc SQUIDs with inductances between 67pH and 114pH were fabricated. Generally the SQUIDs had an intrinsic white flux noise in the 10-30μ(Do/ Hz range, with the best device, a 70pH SQUID, exhibiting a white flux noise of 5μ4bo/ Hz. Different first-order SQUID gradiometer designs were fabricated from single layers of YBCO. Two single-layer gradiometer (SLG) designs were fabricated on 10 x 10mm2 substrates. The best balance and lowest gradient sensitivity measured for these devices were 1/300 and 308fT/cm Hz (at 1kHz) respectively. The larger baseline and larger flux capture area of the pick-up loops in a large area SLG design, fabricated on 30 x 10mm2 substrates, resulted in significant improvements in the balance and gradient sensitivity with 1/1000 and 50fT/cm Hz (at 1kHz) measured respectively. To reduce the uniform field effective area of SLGs and therefore reduce the direct pick-up of environmental field noise when operated unshielded, a novel gradiometric SQUID (G-SQUID) device was developed. Fabricated from a single layer of YBCO, the G-SQUIDs, with inductances of 67pH, had small uniform field effective areas of approximately 2μm2 - more than two orders of magnitude smaller than the uniform field effective areas of conventional narrow-linewidth SQUIDs of similar inductance. Two designs of G-SQUID SLGs were fabricated on 10 x 10mm2 substrates. Due to their small effective areas, when cooled unshielded these devices showed no increase in their white flux noise. The best balance achieved for a G-SQUID SLG was approximately 1/5000 - an order of magnitude better than the balance of similar SLGs incorporating conventional narrow-linewidth SQUIDs.
113

Relaxation dynamics in disordered systems

Romanini, Michela 22 July 2015 (has links)
The nature of the glass transition and of the glassy state is a fundamental and still unsolved problem of condensed matter physics. Many liquids can be supercooled below their melting point without crystallizing, that is, without acquiring translational and orientational order. As the temperature of a supercooled liquid is lowered, the characteristic timescale of moleuclar motions, called relaxation time, increases until it becomes comparable to the timescale of human experimentation. This takes place at the glass transition temperature and leads to a non-equilibrium state of matter, called a ¿structural glass¿, in which a liquid-like lack of order is combined with solid-like elastic properties. Glass transitions are also observed in systems where there is only orientational disorder, such as orientationally disordered (OD) crystals or plastic crystals, which are translationally ordered solids in which the constituent molecules display reorientational motions about their centres of mass. Upon supercooling an OD crystal, the orientational disorder can ¿freeze¿, yielding a so-called ¿orientational glass¿. In molecular materials forming structural or orientational glasses, the most important molecular dynamics process is the cooperative motion of the molecules, referred to as primary relaxation, whose freezing marks the transition to the glass state characterized by static disorder. The main difference between orientational and structural glasses is that in the former the freezing involves exclusively the rotational degrees of freedom of the molecules, while in the latter all six molecular degrees of freedom (i.e., both orientational and translational ones) are frozen. Orientational glasses are therefore systems with fewer degrees of freedom than structural glasses. This simplification, together with the fact that many OD phases are characterized by a crystal lattice with high symmetry, makes OD phases a model playground to investigate the nature of the glass transition. Other than the primary relaxation, there can be also so-called ¿secondary relaxations¿, usually characterized by shorter relaxation time than the primary process. Secondary relaxations may have different origins; for example, they can be due to conformational fluctuations or intramolecular vibrations; in many cases a special kind of secondary relaxation is observed, which is the single-molecule precursor process of the primary relaxation. This thesis focuses on the effect of pressure and temperature on the dynamics of several pure compounds and binary mixtures forming structural or orientational glasses. We present a comparative study between two structural glass formers (ternidazole and the mixture of m-fluoroaniline with m-xylene), a plastic binary mixed crystal (neopenthyl alchol and neopentyl glycol), and two materials displaying statistical orientational disorder (2-adamantanone and pentachloronitrobenzene). In all cases a primary relaxation is present, associated with the collective motion of the molecules, and in most cases also secondary relaxations are observed. For each material, we analyse the temperature- and pressure-dependence of the various molecular relaxation and discuss the origin of secondary processes. One of the most important results of the thesis is the presence of secondary relaxations also in systems with low-dimensional disorder that behave similarly to the secondary relaxations observed in structural glasses. / La naturaleza de la transición vítrea es un problema fundamental y aún no resuelto de la física de la materia condensada. Muchos líquidos pueden ser superenfriados por debajo de su temperatura de fusión sin que cristalicen, es decir, sin que adquieran orden traslacional y orientacional. Cuando la temperatura de un líquido superenfriado baja, el tiempo característico de los movimientos moleculares, llamado tiempo de relajación, aumenta hasta llegar a tiempos comparables con el tiempo característico de los experimentos y de la observación humana. Esto ocurre a una temperatura llamada temperatura de transición vítrea y lleva a un estado de non-equilibrio del material llamado ¿vidrio estructural¿, en el que la ausencia de orden de largo alcance típica del estado líquido se combina con las propiedades elásticas propias de un sólido ordenado. Las transiciones vítreas se pueden observar también en sistemas caracterizados por desorden exclusivamente orientacional, como en los cristales orientacionalmente desordenados (OD) o cristales plásticos. Estos son sólidos traslacionalmente ordenados en los que las moléculas tienen movimientos de reorientación alrededor de sus centros de masa, que están fijos. Superenfriando un cristal OD se obtiene un ¿vidrio orientacional¿ en el cual este desorden orientacional está congelado. El proceso dinámico más importante que caracteriza los materiales moleculares que forman vidrios estructurales u orientacionales es el movimiento cooperativo de las moléculas conocido como relajación primaria. Su congelamiento marca la transición al estado vítreo caracterizado por un desorden estático. La diferencia principal entre los vidrios orientacionales y estructurales es que en los primeros el congelamiento involucra sólo los grados de libertad de rotación, mientras que en los segundos todos los seis grados de libertad moleculares (orientacionales y traslacionales) están congelados. Por tanto, los vidrios orientacionales son sistemas con menos grados de libertad respecto los vidrios estructurales y pueden considerarse como sistemas modelo para investigar la transición vítrea, ya que además muchas fases OD están caracterizadas por redes cristalinas de alta simetría. Además de la relajación primaria, existen también relajaciones secundarias caracterizadas por tiempos de relajación más cortos con respecto al proceso primario. Estas relajaciones secundarias pueden tener diferentes orígenes: por ejemplo, pueden ser debidas a fluctuaciones de la conformación molecular o a vibraciones de enlaces intramoleculares; en muchos casos se observa una relajación secundaria que es considerada como la precursora del proceso primario (relajación Johari-Goldstein). Esta tesis está enfocada en el estudio de los efectos de la presión y de la temperatura sobre la dinámica de algunos compuestos puros y mezclas binarias, los cuales forman vidrios estructurales u orientacionales. Se presenta un estudio comparativo entre dos vidrios estructurales (ternidazole y la mezcla de m-fluoroanilina con m-xileno), un cristal plástico binario (formado por neopenthyl alcohol y neopentyl glycol), y dos materiales que presentan desorden estadístico (2-adamantanona y pentacloronitrobenceno). En todos los casos se observa una relajación primaria asociada a los movimientos colectivos de las moléculas y en la mayoría de los casos se observa también relajaciones secundarias. Para cada material se analiza la dependencia de diferentes relajaciones con la temperatura y con la presión y se discute el origen de los procesos secundarios. Uno de los resultados importantes de la tesis es que en sistemas con desorden de baja dimensionalidad, pueden aparecer relajaciones secundarias que obecen a patrones similares a las encontradas en vidrios estructurales
114

Monte Carlo study of quantum phase transitions at zero temperature

Osychenko, Oleg N. 20 December 2012 (has links)
The Thesis is devoted to simulations of quantum phase transitions by means of Quantum Monte Carlo techniques. Quantum phase transition is a transition between phases at zero or low enough temperature, where quantum effects play an important role. The recent advances in the field of ultracold atom manipulation and optical lattices allowed to produce the systems with unique properties. This opened a perspective to observe quantum phase transitions in many-body systems with non-trivial interparticle interactions in a wide range of the system's characteristic physical parameters and geometries. First, we develop the explicit expressions for the Ewald sums in systems with an interaction potential of a generic 1/r^k type, and in 3D, 2D and 1D geometry. These generalizations can be useful in simulating systems with important interaction potentials as the dipole-dipole, van der Waals interaction, etc. In this Thesis we give the functional forms for the terms of the Ewald sums, ready for implementation in a code. The derivation and the functional form of the results differ in the cases of short-ranged, long-ranged and "marginal" forces, and for a jellium model. It is argued that in the case of some short-range potentials the Ewald method can be advantageous with respect to a direct summation due to a faster convergence rate. We also give a discussion of the convergence properties of a quasi-neutral Coulomb system. We have obtained the zero-temperature phase diagram of bosons interacting through Yukawa forces. We have used a diffusion Monte Carlo simulation starting from a good approximation to the optimal variational ground-state wave function obtained by solving the corresponding Euler-Lagrange hypernetted chain equations. The phase diagram shows that any fermionic mixture of pure elements will always be seen in gaseous form, as the mass ratios required for crystallization of weakly bound fermionic molecules are far beyond the ones that can be achieved in nature. We investigate an alternative mechanism based on the confinement of one of the species to a deep optical lattice which increases its effective mass. The resulting mass ratio of the mixture created in this way can then be tuned at will and could be used to check experimentally the predicted phase diagram both in the gas and crystal (superlattice) phases. We performed a QMC study of the system, comrised of Rydberg atoms. The applied QMC techniques allowed to parametrize a model with isotropic van der Waals interactions into a universal phase diagram. We have characterized the phase diagram of Rydberg atoms by considering a model of bosons with repulsive van der Waals 1/r^6 interaction, and determined solidification and Bose-Einstein condensation conditions. Relaxation mechanisms other than thermal motion should be considered if one considers Rydberg systems on timescales of several tenths of microseconds. We have also studied the excitation spectrum within the approximation of a classical harmonic crystal. We also discuss that interactions between Rydberg excitations open a possibility of new supersolid scenarios. In the last Chapter of the Thesis I present a study of the system of para-hydrogen atoms at low temperatures below the point of crystallization by means of QMC methods. The zero-temperature simulation was performed in order to investigate the properties of a metastable liquid phase and to find the fraction of the Bose-Einstein condensate in the relevant range of densities. The methods of choice for the zero-temperature simulations of the para-H2 system were VMC and DMC techniques. The results of the zero-temperature simulations suggest that the metastable liquid para-hydrogen is a strongly correlated liquid, which again serves as an evidence of high instability of this hypothetical system. The calculation of the Bose-Einstein condensate shows that the condensate fraction is substantially lower than in the liquid helium He4. / Los avances recientes en manipulación de átomos ultrafrios y retículos ópticos abrieron la posibilidad de observar las transiciones de fase en sistemas de muchos cuerpos con las interacciones interparticulares no triviales para un amplio rango de los parámetros físicos característicos y geometrías del sistema. En principio desarrollamos las expresiones explicitas para las sumas de Ewald en el caso del potencial de interacción genérico 1/r^k, y en las geometrías arbitrarias: 3D, 2D y 1D. Dichas generalizaciones pueden ser útiles para simular sistemas con los potenciales importantes como dipolo-dipolo, interacción de van der Waals, etc. En la Tesis presentamos las formas funcionales para los términos de las sumas de Ewald, listas para la implementación actual. La derivación y las formas funcionales cambian en función de la potencial de corto, largo o alcance "marginal", y en particular para el modelo de jellium. Argüimos que en el caso del potencial de corto alcance el método de Ewald puede ser ventajoso respecto a la sumatorio directo gracias a la convergencia más rápida. También presentamos la discusión sobre las propiedades de convergencia del sistema de Coulomb сuasi-neutro. Hemos obtenido el diagrama de fase a temperatura cero de los bosones interactuando mediante a las fuerzas de Yukawa. Hemos usado la simulación de Monte Carlo difusivo empezando de una buena aproximación a la función de onda óptima del estado de base obtenida a través de la solución de las ecuaciones de Euler-Lagrange del método HNC. El diagrama de fase demuestra que la mezcla fermiónica de los elementos puros siempre aparece en la forma gaseosa, como los parametros requeridos para la cristalización de estas moléculas fermiónicas están fuera de lo que puede ser visto en la naturaleza. Investigamos el mecanismo alternativo basado en el confinamiento de una de las especies en el retículo óptico, que aumenta su masa efectiva. El cociente de masas de la mezcla creada de esta manera puede ser ajustada arbitrariamente y usada para comprobar el diagrama de fase predicha en el estudio tanto en fase liquida como en la cristalina. Hemos hecho el estudio QMC del sistema de los átomos de Rydberg. Las técnicas de Monte Carlo cuánticas aplicadas nos permitieron parametrizar el modelo mediante la interacción de van der Waals isotrópica y así obtener el diagrama de fase universal. Caracterizamos el diagrama de fase de los átomos de Rydberg considerando el modelo de bosones con la interacción repulsiva 1/r^6, y determinamos las condiciones de solidificación y condensación de Bose-Einstein. Los mecanismos de relajación aparte del movimiento térmico deben de ser tenidos en cuenta a escala de tiempo de decenas de microsegundos. Estudiamos también el espectro de excitaciones dentro de la aproximación de cristal clásico harmónico. Finalmente, discutimos que las interacciones entre las excitaciones de Rydberg abren la posibilidad de los escenarios nuevos del supersólido.
115

Ultrafast vibrational dynamics in liquids and proteins

Giraud, Gerard January 2003 (has links)
No description available.
116

The complex sine-Gordon model on a half line

Tzamtzis, Georgios January 2003 (has links)
In this thesis, we study the complex sine-Gordon model on a half line. The model in the bulk is an integrable (l+1) dimensional field theory which is U(1) gauge invariant and comprises a generalisation of the sine-Gordon theory. It accepts soliton and breather solutions. By introducing suitably selected boundary conditions we may consider the model on a half line. Through such conditions the model can be shown to remain integrable and various aspects of the boundary theory can be examined. The first chapter serves as a brief introduction to some basic concepts of integrability and soliton solutions. As an example of an integrable system with soliton solutions, the sine-Gordon model is presented both in the bulk and on a half line. These results will serve as a useful guide for the model at hand. The introduction finishes with a brief overview of the two methods that will be used on the fourth chapter in order to obtain the quantum spectrum of the boundary complex sine-Gordon model. In the second chapter the model is properly introduced along with a brief literature review. Different realisations of the model and their connexions are discussed. The vacuum of the theory is investigated. Soliton solutions are given and a discussion on the existence of breathers follows. Finally the collapse of breather solutions to single solitons is demonstrated and the chapter concludes with a different approach to the breather problem. In the third chapter, we construct the lowest conserved currents and through them we find suitable boundary conditions that allow for their conservation in the presence of a boundary. The boundary term is added to the Lagrangian and the vacuum is reexamined in the half line case. The reflection process of solitons from the boundary is studied and the time-delay is calculated. Finally we address the existence of boundary-bound states. In the fourth chapter we study the quantum complex sine-Gordon model. We begin with a brief overview of the theory in the bulk where the semi-classical spectrum and an exact S'-matrix are presented. Following that we use the stationary phase method to derive the semi-classical spectrum of boundary bound states. The bootstrap method is used as an alternative approach to obtain the same spectrum. The results are discussed and compared. The final chapter consists of a general discussion on open questions and problems of the model, and some proposals for further research.
117

Quantum gauge theory simulation with ultracold atoms

Zamora, Alejandro 15 December 2014 (has links)
The study of ultracold atoms constitutes one of the hottest areas of atomic, molecular, and optical physics and quantum optics. The experimental and theoretical achievements in the last three decades in the control and manipulation of quantum matter at macroscopic scales lead to the so called third quantum revolution. Concretely, the recent advances in the studies of ultracold gases in optical lattices are particularly impressive. The very precise control of the diverse parameters of the ultracold gas samples in optical lattices provides a system that can be reshaped and adjusted to mimic the behaviour of other many-body systems: ultracold atomic gases in optical lattices act as genuine quantum simulators. The understanding of gauge theories is essential for the description of the fundamental interactions of our physical world. In particular, gauge theories describe one of the most important class of systems which can be addressed with quantum simulators. The main objective of the thesis is to study the implementation of quantum simulators for gauge theories with ultracold atomic gases in optical lattices. First, we analyse a system composed of a non-interacting ultracold gas in a 2D lattice under the action of an exotic and external gauge field related to the Heisenberg-Weyl gauge group. We describe a novel method to simulate the gauge degree of freedom, which consists of mapping the gauge coordinate to a real and perpendicular direction with respect to the 2D space of positions. Thus, the system turns out to be a 3D insulator with a non-trivial topology, specifically, a quantum Hall insulator. Next, we study an analog quantum simulation of dynamical gauge fields by considering spin-5/2 alkaline-earth atoms in a 2D honeycomb lattice. In the strongly repulsive regime with one particle per site, the ground state is a chiral spin liquid state with broken time reversal symmetry. The spin fluctuations around this configuration are given in terms of an emergent U(1) gauge theory with a Chern-Simons toplogical term. We also address the stability of the three lowest lying states, showing a common critical temperature. We consider experimentally measurable signatures of the mean field states, which can also be key insights for revealing the gauge structure . Then, we introduce the notion of constructive approach for the lattice gauge theories, which leads to a family of gauge theories, the gauge magnets. This family corresponds to quantum link models for the U(1) gauge theory, which consider a truncated dimensional representation of the gauge group. First of all, we (re)discover the phase diagram of the gauge magnet in 2+1 D. Then, we propose a realistic implementation of a digital quantum simulation of the U(1) gauge magnet by using Rydberg atoms, considering that the amount of resources needed for the simulation of link models is drastically reduced as the local Hilbert space shrinks from infinity to 2D (qubit). Finally, motivated by the advances in the simulation of open quantum systems, we turn to consider some aspects concerning the dynamics of correlated quantum many body systems. Specifically we study the time evolution of a quench protocol that conserves the entanglement spectrum of a bipartition. We consider the splitting of a critical Ising chain in two independent chains, and compare it with the case of joining two chains, which does not conserve the entanglement spectrum. We show that both quenches are both locally and globally distinguishable. Our results suggest that this conservation plays a fundamental role in both the out-of-equilibrium dynamics and the subsequent equilibration mechanism / L'estudi dels àtoms ultrafreds constitueix una de les àrees més actives de la física atòmica, molecular, òptica i de l'òptica quàntica. Els èxits teòrics i experimentals de les tres últimes dècades sobre el control i la manipulació de la matèria quàntica en escala macroscòpica condueix a l'anomenada tercera revolució quàntica. Concretament, els recents avenços en els estudis dels àtoms ultrafred en xarxes òptiques proporcionen un sistema que es pot reajustar i reorganitzat per imitar el comportament d'altres sistemes de molts cossos: els gasos d'àtoms ultrafreds en xarxes òptiques actuen com a genuïns simuladors quàntics. La comprensió de les teories de gauge és clau per a la descripció de les interaccions fonamentals del nostre món físic. Particularment, les teories de gauge descriuen una de les més importants classes de sistemes que poden ser tractats amb simuladors quàntics. L'objectiu principal de la tesi és estudiar la implementació de simuladors quàntics de teories de gauge amb gasos d'àtoms ultrafreds en xarxes òptiques. En primer lloc, analitzem un sistema format per un gas ultrafred no interaccionant en una xarxa 2D sota l'acció d'un camp de gauge exòtic i extern provinent del grup de gauge de Heisenberg-Weyl. Descrivim un nou mètode per simular el grau de llibertat gauge, que consisteix a associar la coordenada gauge a una coordenada real i perpendicular a l'espai 2D de les posicions. Així, el sistema resultar ser un aïllant 3D amb topologia no trivial, concretament un aïllant Hall quàntic. Seguidament, estudiem un simulador quàntic analògic de camps de gauge dinàmics amb àtoms alcalinoterris en una xarxa hexagonal. Al régim fortament repulsiu amb un àtom en cada lloc, l'estat fonamental és un líquid espinorial quiral amb la simetria d'inversió temporal trencada. Les fluctuacions d'espín al voltant d'aquesta configuració vénen descrites per una teoria gauge U(1) emergent amb un terme topològic de Chern-Simons. També tractem l'estabilitat dels tres estats amb mínima energia, tot observant una temperatura crítica comuna. Considerem indicis experimentals mesurables dels estats de camp mitjà, que poden ser claus per revelar l'estructura gauge. A continuació, introduïm un enfoc constructiu per a teories gauge en el reticle, la qual porta a una família de teories de gauge, els magnets de gauge. Aquesta família es correspon amb els models d'enllaços quàntics de la teoria gauge U(1). Primer, (re)descobrim el diagrama de fases del magnet de gauge en 2+1 D. Després, proposem una implementació realista d'un simulador quàntic digital del magnet de gauge U(1) amb àtoms de Rydberg, considerant que el nombre de recursos necessaris per a la simulació dels models d'enllaços es redueix dràsticament pel fet que l'espai d' Hilbert local disminueix de dimensió infinita a 2 (bit quàntic). Finalment, motivats pels avenços en la simulació de sistemes quàntics oberts, considerem alguns aspectes de la dinàmica de sistemes quàntics correlacionats de molts cossos. Específicament, estudiem l'evolució temporal en un protocol de canvi sobtat que conserva l'espectre d'entrellaçament d'una bipartició. Considerem la ruptura d'una cadena d'Ising en dues cadenes independents i ho comparem amb la unió de dues cadenes, la qual no conserva l'espectre d'entrellaçament / El estudio de los átomos ultrafríos constituye una de las áreas mas activas de la física atómica, molecular, óptica y de la óptica cuántica. Los logros teóricos y experimentales de las tres últimas décadas sobre el control y la manipulación de la materia cuántica a escala macroscópica conducen a la denominada tercera revolución cuántica. Concretamente, los avances recientes en los estudios de átomos ultrafríos en redes ópticas proporcionan un sistema que puede ser reajustado y reorganizado para imitar el comportamiento de otros sistemas de muchos cuerpos: los gases de átomos ultrafríos en redes ópticas actúan como genuinos simuladores cuánticos. La comprensión de las teorías de gauge es clave para la descripción de la interacciones fundamentales de nuestro mundo físico. En particular, las teorías de gauge describen una de las mas importante clase de sistemas que pueden ser abordados con simuladores cuánticos. El objetivo principal de la tesis es estudiar la implementación de simuladores cuánticos de teorías de gauge con gases de átomos ultrafríos en redes ópticas. En primer lugar, analizamos un sistema formado por un gas ultrafrío no interactuante en una red 2D, bajo la acción de un campo de gauge exótico y externo descrito por el grupo de gauge de Heisenberg-Weyl. Describimos un método novedoso para simular el grado de libertad gauge , que consiste en asociar la coordenada gauge a una coordenada real y perpendicular al espacio 2D de las posiciones. Así, el sistema resulta ser un aislante 3D con una topología no trivial, específicamente un aislante Hall cuántico. Seguidamente, estudiamos un simulador cuántico analógico de campos de gauge dinámicos, considerando átomos alcalinotérreos en una red hexagonal. En el régimen fuertemente repulsivo con una átomo en cada sitio, el estado fundamental es un liquido espinorial quiral con la simetría de inversión temporal rota. Las fluctuaciones de espín alrededor de dicha configuración vienen dadas en términos de una teoría de gauge U(1) emergente con un término topológico de Chern-Simons. También tratamos la estabilidad de los tres estados con mínima energía, observando una temperatura crítica común. Consideramos indicios experimentales medibles de los estados de campo medio, que pueden claves para revelar la estructura de gauge. A continuación, introducimos la noción del enfoque constructivo para teorías de gauge en el retículo, lo que conduce a una familia de teorías de gauge, los magnetos de gauge. Esta familia se corresponde con los modelos de enlaces cuánticos para la teoría de gauge U(1), los cuales consideran una representación dimensional truncada del grupo de gauge. Primeramente, (re)descubrimos el diagrama de fases del magneto de gauge en 2+1D. Seguidamente, proponemos un implementación realista de un simulador cuántico digital del magneto de gauge U(1) usando átomos de Rydberg, considerando que el número de recursos necesarios para la simulación de los modelos de enlace está drásticamente reducido debido a que el espacio de Hilbert local disminuye de infinitas dimensiones a 2 (bit cuántico). Finalmente, motivados por los avances en la simulación de sistemas cuánticos abiertos, consideramos algunos aspectos sobre la dinámica de sistemas cuánticos correlacionados de muchos cuerpos . Específicamente, estudiamos la evolución temporal en un protocolo de cambio súbito que conserva el espectro de entrelazamiento de una bipartición. Consideramos la ruptura de una cadena de Ising en dos cadenas independientes y lo comparamos con la unión de dos cadenas, la cual no conserva el espectro de entrelazamiento. Estos dos cambios abruptos son localmente y globalmente distinguibles. Nuestro resultado sugiere que la mencionada conservación juega un papel fundamental en la dinámica fuera de equilibrio y en el consiguiente equilibrio.
118

Two-loop helicity amplitudes in QCD

Garland, Lee W. January 2003 (has links)
We compute the σ(α3/8) virtual QCD corrections for the process e+e- →qqg arising from the interference of the two-loop and tree amplitudes and from the self-interference of the one-loop amplitude. The results are presented in the form of both matrix elements and helicity amplitudes. The calculation of the matrix elements is performed by the direct evaluation of the Feynman diagrams and corresponding loop integrals. The helicity amplitudes are derived in a scheme-independent way from the coefficients appearing in the general expression for the tensorial structure of this process. The tensor coefficients are then extracted from the Feynman diagrams by means of projectors. The one- and two-loop integrals appearing in the amplitudes are reduced to a small set of known master integrals by means of integration-by-parts identities. This reduction has been automated by construction of an algorithm based on that proposed by Laporta. The infrared pole structure of both the matrix elements and helicity amplitudes is shown to agree with the predictions made by the infrared factorisation formula of Catani. The analytic results for the finite terms, regularised in conventional dimensional regularisation and renormalised in the MS scheme, are presented, expressed in terms of one- and two-dimensional harmonic polylogarithms.
119

Photoionization of AlII

Hudson, C. E. January 2002 (has links)
No description available.
120

Superfluidity, collective excitation and nonlinear dynamic of Bose-Einstein condensates

McPeake, D. January 2002 (has links)
No description available.

Page generated in 0.0673 seconds