• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 15
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studies of the secondary electron emission from diamond films

Vaz, Raquel Maria Amaro January 2013 (has links)
The aim of the present research was the development of an optimised secondary electron emission (SEE) diamond film to use as a dynode material. The project was a partnership between the School of Chemistry in the University of Bristol, the Space Research Centre (SRC) at the University of Leicester and Photek, a company specialized in the manufacture of systems for photon detection. The role of Bristol in this project consisted in the preparation of CVD diamond films and their characterization, before supply to the other collaborators. SEE characterisation of the samples was performed at SRC and Photek would proceed to further testing in actual tubes. Besides its participation in the project, Bristol went further and developed the means to do its own SEE measurements. This thesis describes the work undertaken at Bristol using the facilities at the Diamond CVD group. Diamond films were prepared by hot-filament (HF) CVD covering a range of crystallinities, thicknesses and levels of boron (B) doping, on different substrate materials. A new home-built apparatus has been developed for the acquisition of SEE data from diamond films, both in reflection and transmission configurations. The setup consists of a system of phosphor screens acting as detectors and associated to PMTs for the acquisition of signal measured from the diamond samples. A comprehensive study evaluating the effects of B-doping, crystallinity, surface termination, thickness and substrate material of diamond films on yield and yield degradation in the SEE reflection yields has been performed. In addition, SEE yields from commercial CVD diamond samples were analysed, after surface functionalization by hydrogenation, caesiation and lithiation. Moreover, the present study allowed for an improvement in the growth of thin NCD films, essentially through the optimization of the seeding processes. Finally, the development of techniques to manufacture free standing diamond films on silicon substrates were investigated, and preliminary SEE measurements in transmission were undertaken.
12

K-α emission from ultra-short pulsed laser plasmas

McEvoy, A. M. January 2004 (has links)
No description available.
13

Development of an all-fibre source of heralded single photons

McMillan, Alex January 2012 (has links)
The preparation of single photons in a pure quantum state is a subject of great interest in physics, enabling the control of light at an unprecedented level. The ease with which certain degrees of freedom of photon states, such as polarisation, can be manipulated, along with the inherent resilience of photons to decoherence, makes them well suited for use as qubits. Recent rapid developments in the transmission and processing of quantum information, as well as the likely technological impact of potential real-world applications such as quantum cryptography and quantum computation, mean that the demand for high performance single photon sources is likely to increase in the near future. One approach to producing single photon states, which are known to be in a well-defined spatio-temporal mode without destructively measuring them, is to take advantage of nonlinear optics. Nonlinear processes can be used to realise frequency conversion by generating a single, correlated pair of photons from an intense pump laser source. The detection of one of the photons from a pair can then be used to indicate the presence of the other photon in the pair, a procedure known as heralding. This thesis describes the development of a source of heralded single photons at 1550 nm, generated directly in the core of a photonic crystal fibre (PCF). By taking advantage of low loss fibre components for the required spectral filtering of the generated photon state, a heralding fidelity of 52% was achieved. The source was designed to be used with a picosecond pulsed fibre laser, making it relatively low cost and maintenance free. With 148 mW of average pump power a heralded output photon rate of 6.4 × 104 s-1 was observed, demonstrating the brightness of the source. The purity of the generated single photons was established by measuring non-classical interference, with a visibility of 70%, between the photons output from this source and a source based on a PPLN waveguide. The fabrication of a series of birefringent PCFs for the generation of spectrally pure state photons at 1550 nm is also discussed. These PCFs will be useful for incorporation in the next generation of high performance, fibre-based photon sources.
14

Single photon sources in the infrared

Wang, Xu January 2011 (has links)
This thesis reports the study of single photon sources that emit one infrared wavelength photon at a time, creating cavity quantum electrodynamical effects for applications such as quantum information processing. This work considers two major single photon sources: a) InAs single quantum dots and b) single carbon nanotubes, which both emit in the infrared range. Photonic crystal slabs and photonic crystal waveguides are served as distinctive passive devices with manipulated photonic band-gaps to control the propagating light. A simulation of leaky modes of two-dimensional photonic crystal slabs is introduced to constrain model parameters in the device design. Fullerenes are used as fluorescent material to achieve resonance of a leaky mode with excitation 1492 nm and emission at 1519 nm and to see enhancement of the PL. We include novel characterization techniques and PL measurements to show sharp emission peaks from single quantum dots and successfully couple them to micro-cavities. The strong coupling effect is observed and is amongst the best examples of cavity-dot structures achieved to date. Single-walled carbon nanotubes have shown anti-bunched light emission, thus we systematically study them as another possible candidate of single photon sources. PLE spectra show clear evidence of the existence of excited states, and time evolution measurements reveal the disorder induced diffusion, which separate the tubes into a series of quantum dots. These strongly confined states are concluded as the origin of the possibility that single-walled carbon nanotubes are single photon sources.
15

Expériences de plasmonique quantique : dualité onde corpuscule du plasmon de surface et intrication entre un photon et un plasmon de surface. / Quantum Plasmonics experiments : wave-particle duality of the surface plasmon and entanglement of a photon with a surface plasmon.

Dheur, Marie-Christine 26 April 2016 (has links)
Nous présentons deux expériences de plasmonique quantique, c’est-à-dire des expériencesd’optique quantique ayant pour support des plasmons de surface. Dans la première expérience, nous montrons la dualité onde-corpuscule d’un plasmon de surface unique (1) en utilisant la démarche de l’article de Philippe Grangier, Gérard Roger et Alain Aspect (2) sur les interférences à un photon unique. Dans la deuxième expérience, nous mettons en évidence les propriétés d’intrication entre un photon et un plasmon de surface. Nous produisons des photons intriqués en polarisation et les séparons spatialement. / We present two quantum plasmonics experiments, namely quantum optics on surface plasmons. In the first experiment, we show the wave-particle duality of a single surface plasmon along the same lines as the single-photon interferences experiment of Philippe Grangier, Gérard Roger and Alain Aspect (2). In the second experiment, we bring out between a photon and a surface plasmon. We generate paires of polarization entangled photons and separate the pair photons spatially. A former photon is send to a semi-plasmonic Mach-Zehnder interferometer whose first beam splitter is a polarization beam splitter whose output are converted to plasmons and on a plasmonic beamsplitter.

Page generated in 0.0313 seconds