• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 4
  • 1
  • Tagged with
  • 22
  • 15
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Funkce RAD18 v ubikvitinaci na místech dvouřetězcových DNA zlomů / Role of RAD18 in ubiquitin signaling at DNA double-strand breaks

Palek, Matouš January 2021 (has links)
RAD18 is an E3 ubiquitin ligase that prevents the replication forks from collapsing caused by damaged DNA. As an important factor controlling replication, its dysregulation was shown to be associated with some human tumours. However, the clinical relevance of this finding is unknown. The aim of the thesis was evaluation of selected RAD18 variants that had been identified in breast and ovarian cancer patients. This work revealed functional defects of RAD18 variants not only in replication fork protection but also in repair of DNA double-strand breaks. This unconventional role of RAD18 is known to be dependent on upstream ubiquitination events, however, its contribution to the repair per se is not understood. This work aimed to elucidate the function of RAD18 in DNA double-strand break repair by homologous recombination focusing especially on its relationship with 53BP1. Data presented here show that RAD18 effectively disrupts 53BP1 accumulation in the repair foci by competition for the same binding partner and thus promotes resection of DNA ends. This antagonistic function of RAD18 is restricted both spatially (to the vicinity of the repair centre) and temporarily (to S phase). Moreover, it seems to be regulated by existence of RAD18 in two distinct complexes. Potential models for this regulation...
22

Quantification of Radiation Induced DNA Damage Response in Normal Skin Exposed in Clinical Settings

Simonsson, Martin January 2011 (has links)
The structure, function and accessibility of epidermal skin provide aunique opportunity to study the DNA damage response (DDR) of a normaltissue. The in vivo response can be examined in detail, at a molecularlevel, and further associated to the structural changes, observed at atissue level. We collected an extensive skin biopsy material frompatients undergoing fractionated radiotherapy for 5 to 7 weeks. Several end-points inthe DDR pathways were examined before, during and after the treatment. Quantification of DNA double strand break (DSB) signalling focirevealed a hypersensitivity to doses below 0.3Gy. Furthermore, aconsiderable amount of foci persisted between fractions. The low dosehypersensitivity was observed throughout the treatment and was alsoobserved for several key parameters further downstream in the DDR-pathway, such as p21-associated checkpoint activation, apoptosisinduction and reduction in basal keratinocyte density (BKD).Furthermore, for dose fractions above 1.0 Gy, a distinct acceleration inDDR was observed half way into treatment. This was manifested as anaccelerated loss of basal keratinocytes, mirrored by a simultaneousincrease in DSBs and p21 expression. Quantifications of mitotic events revealed a pronounced suppression ofmitosis throughout the treatment which was clearly low dosehypersensitive. Thus, no evidence of accelerated repopulation could beobserved for fraction doses ranging from 0.05 to 2Gy. Our results suggest that the keratinocyte response primarily isdetermined by checkpoints, which leads to pre-mitotic cell elimination by permanent growth arrest and apoptosis. A comparison between the epidermal and dermal sub-compartments revealsa consistent up-regulation of the DDR response during treatment. Adifference was however observed in the recovery phase after treatment,where miR-34a and p21 remain up-regulated in dermis more persistentlythan in epidermis. Our observations suggest that the recovery phaseafter treatment can provide important clues to understand clinicalobservations such as the early and late effects observed in normaltissues during fractionated radiotherapy.

Page generated in 0.0257 seconds