• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

xG-SS: Towards a Hardware and Simulation Experimentation Platform for Spectrum Sharing with 5G NR-U

Sathish, Aditya 13 February 2025 (has links)
The advent of 6th Generation (6G) wireless systems and the increasing demand for spectrum to accommodate a growing number of users and diverse services have necessitated novel ap- proaches to spectrum sharing. Among these approaches, distributed spectrum sharing offers the most flexibility by allowing real-time spectrum use based on user demand and network con- straints. However, this approach presents significant challenges due to the probabilistic nature of system dynamics and the autonomous behavior of each incumbent, which require advanced strategies to predict and manage spectrum usage effectively. Listen-Before-Talk (LBT) is the most widely adopted method for distributed spectrum sharing in unlicensed bands. While LBT has been extensively studied in the context of Wireless Fidelity (Wi-Fi), providing key insights into its performance under various conditions, its application in synchronized, slot-scheduled sys- tems like New Radio (NR) Unlicensed (NR-U) remains underexplored. This gap exists primarily due to the lack of hardware testbeds and system-level simulation platforms that are essential for evaluating the effectiveness of LBT in NR-U and for developing improved methods for operating in shared spectrums with deterministic worst-case delays. This thesis addresses the existing gap by proposing a reference architecture for spectrum sharing based on 5th Generation (5G) NR-U to facilitate further research and experimentation in distributed spectrum sharing. The approach taken in this thesis is threefold: (i) the establishment of a system architecture for an end-to-end 5G NR-U system based on existing work in hardware and simulation models; (ii) the realization of this system model on the Network Simulator 3 (ns-3) discrete-event simulator by leveraging developments from the 5G Long-Term Evolution (LTE) Enhanced Packet Core (EPC) Network Simulator (LENA) (5G-LENA) system architecture; and (iii) the conceptual design for implement- ing the Physical (PHY) layer of a 5G NR-U system using Software-Defined Radios (SDRs) and the OpenAirInterface (OAI) 5G software platform. A key novelty of this reference architecture is the proposed mitigation of LBT latency in split architectures with SDRs and General-Purpose Processors (GPPs). The LBT block is designed for implementation within the Field Program- ming Gate Array (FPGA) of Universal Software Radio Peripheral (USRP) SDRs, thereby enabling heterogeneous coexistence experimentation with Common Off-the-Shelf (COTS) Wi-Fi Access Points (APs). The thesis presents a simulation-based experiment that optimizes traffic manage- ment to improve the ability to serve delay-critical traffic in NR-U systems operating under ho- mogeneous coexistence conditions. The thesis then outlines a reference design for exploring heterogeneous coexistence between Wi-Fi and NR-U in the sub-7 GHz spectrum. This concep- tual framework leverages a proposed hardware experimentation platform with SDRs. The in- frastructure supporting these simulations and proposed hardware experiments is envisioned as virtualized resources over the Commonwealth Cyber Initiative (CCI) xG Testbed, with potential extensions for advanced spectrum sharing use cases across indoor and outdoor testbed sites. The thesis outlines potential enhancements to this testbed, specifically toward spectrum sharing with scheduled-access systems. / Master of Science / As wireless communication demand grows with the development of 6G, finding efficient ways to share the limited available spectrum has become increasingly important. One promising ap- proach is distributed spectrum sharing, which allows dynamic use of the spectrum based on real-time demands. However, this method faces challenges due to the unpredictable behavior of different users and devices, requiring sophisticated strategies to manage spectrum usage effec- tively. Currently, the most common method for distributed spectrum sharing is LBT, widely used in Wi-Fi networks. Although LBT has been well-studied in these environments, its use in systems like NR-U – a variant of 5G designed for unlicensed spectrum—has not been thoroughly explored. This gap exists mainly because there are few hardware testbeds and simulation platforms avail- able to study how LBT and other methods might work in real-world systems. This thesis aims to address this gap by developing a standardized platform for testing and experimenting with 5G NR-U technologies. The work involves three key steps: (i) designing a comprehensive system architecture for 5G NR-U; (ii) implementing this system in a simulation environment to study its performance; and (iii) proposing a design for key components using SDR and open-source soft- ware, creating a foundation for future hardware-based testing. To demonstrate the capabilities of this new platform, we conducted a simulation-based experiment focused on optimizing traffic management in NR-U systems to better handle delay-sensitive communications. Although no hardware experiments were conducted, the thesis provides a conceptual framework for future studies exploring how Wi-Fi and NR-U could coexist in the same frequency bands using the pro- posed hardware platform. The thesis concludes with suggestions for future improvements to the testbed, particularly in advancing spectrum sharing techniques with scheduled-access systems.
2

Performance Evaluation of 3GPP Standards for C-V2X Communications

González Malla, Edgar Emanuel 19 January 2025 (has links)
[ES] Las redes móviles de quinta generación (5G) destacan por su robustez, superando las prestaciones ofrecidas por sus predecesoras. Estas redes, comúnmente denominadas 5G, posibilitan mejoras significativas en los indicadores clave de rendimiento (KPIs, por sus siglas en inglés) con el propósito de respaldar casos de uso y servicios avanzados. Estos KPIs se clasifican en tres escenarios fundamentales: Banda Ancha Móvil Mejorada (eMBB, por sus siglas en inglés), Comunicaciones Ultra Fiables y de Baja Latencia (uRLLC, por sus siglas en inglés) y Comunicaciones Masivas entre Máquinas (mMTC, por sus siglas en inglés). El escenario eMBB se orienta primordialmente hacia servicios que demandan elevadas tasas de transmisión y recepción para garantizar una experiencia de usuario mejorada. En contraste, uRLLC aborda situaciones que requieren estrictos estándares de baja latencia y alta confiabilidad en la red, como es el caso de aplicaciones en tiempo real, donde la pronta respuesta de la red es indispensable. Por su parte, el escenario mMTC se refiere a aplicaciones y servicios que solicitan el respaldo de la red para la conectividad masiva de dispositivos por kilómetro cuadrado, además de una eficiencia energética mejorada. Entre los servicios y aplicaciones más destacados, se encuentran aquellos basados en comunicaciones vehiculares mediante la red celular, conocidos en el estándar como comunicaciones V2X. En términos generales, la comunicación V2X engloba el intercambio de paquetes entre vehículos y diversos elementos de la red. Cuando estas comunicaciones se efectúan mediante estándares basados en redes móviles, ya sea en LTE o NR, la interfaz radio de 5G, se denominan C-V2X. En este contexto, las comunicaciones Vehículo a Vehículo (V2V) posibilitan el intercambio de paquetes entre vehículos, mientras que las comunicaciones de Vehículos con Infraestructuras (V2I) facilitan el intercambio entre vehículos e infraestructuras de red. Por su parte, las comunicaciones de Vehículos con Peatones (V2P) comprenden la transferencia de paquetes entre vehículos y dispositivos portados por peatones, y las comunicaciones Vehículo a Red (V2N) permiten el intercambio de tráfico V2X entre vehículos y la red. Cada tipo de comunicación posibilita la implementación de diversos servicios, desde funciones básicas hasta aplicaciones avanzadas que exigen potenciales requerimientos por parte de la red. En esta Tesis Doctoral, se llevó a cabo una revisión exhaustiva del estándar para comunicaciones V2X LTE y NR V2X, destacando particularmente los modos de comunicación descentralizados, como se mencionó anteriormente. Posteriormente, se realizó una campaña de simulaciones a nivel de sistema para configurar escenarios V2X conforme a las especificaciones del 3GPP. Los resultados obtenidos permitieron evidenciar que las prestaciones del modo 4 en LTE son adecuadas para servicios básicos que no requieren un alto throughput, bajas latencias o estrictos criterios de fiabilidad en la red. En contraste, mediante el modo 2 de NR V2X, se observó un rendimiento mejorado, lo que permite la adaptación a servicios V2X avanzados. Asimismo, se demostró que altas numerologías contribuyen a un mejor comportamiento del sistema al proporcionar una mayor diversidad de recursos, reduciendo la probabilidad de que dos vehículos utilicen los mismos recursos para sus transmisiones en el modo descentralizado. Además, se comprobó que en NR V2X es crucial una combinación adecuada de numerologías, anchos de banda de canal y tamaño de los subcanales sidelink, según los servicios V2X a implementar. Finalmente, se analizó la incorporación de tecnologías de múltiples accesos radio (multi-RAT) con el fin de respaldar servicios avanzados y mejorar la interoperabilidad mediante el uso de tecnologías de acceso basadas en LTE y NR, especialmente en escenarios con múltiples operadores de red móvil (MNOs), interfaces de conexión y modos de comunicación. / [CA] Les xarxes mòbils de cinquena generació (5G) destaquen per la seva robustesa, superant les característiques que ofereixen els seus predecessors. Aquestes xarxes, comunament anomenades 5G, permeten millores significatives en els indicadors de rendiment clau (KPI) per donar suport a casos i serveis d'ús avançats. Aquests KPI es classifiquen en tres escenaris fonamentals: banda ampla mòbil millorada (eMBB), comunicacions de baixa latència i fiabilitat (uRLLC) i comunicacions massives entre màquines (mMTC). L'escenari eMBB s'orienta principalment a serveis que exigeixen altes taxes de transmissió i recepció per garantir una millor experiència d'usuari. En canvi, uRLLC aborda situacions que requereixen estàndards estrictes de baixa latència i alta fiabilitat de la xarxa. Aquesta necessitat es manifesta, per exemple, en aplicacions en temps real on la resposta ràpida a la xarxa és un factor indispensable. Pel que fa a l'escenari mMTC, es refereix a aplicacions i serveis que sol·liciten suport de xarxa per a una connectivitat massiva de dispositius per quilòmetre quadrat, a més d'una millora de l'eficiència energètica. Entre els serveis i aplicacions esmentats, destaquen els basats en comunicacions vehiculars a través de la xarxa cel·lular, coneguts segons la norma com a comunicacions V2X. En termes generals, la comunicació V2X engloba l'intercanvi de paquets entre vehicles i diversos elements de xarxa. Quan aquestes comunicacions es realitzen utilitzant estàndards basats en xarxes mòbils, ja sigui en Evolució a llarg termini (LTE) o Nova Ràdio (NR), s'anomenen C-V2X. En aquest context, les comunicacions Vehicle-to-Vehicle (V2V) permeten l'intercanvi de paquets entre vehicles, mentre que les comunicacions Vehicle-to-Infraestructura (V2I) faciliten l'intercanvi entre vehicles i infraestructures de xarxa. Per la seva banda, les comunicacions Vehicle-to-Pedestrian (V2P) inclouen la transferència de paquets entre vehicles i dispositius transportats per vianants, i les comunicacions Vehicle a Xarxa (V2N) permeten l'intercanvi de trànsit V2X entre vehicles i la xarxa. Cada tipus de comunicació permet la implementació de diversos serveis, des de funcions bàsiques fins a aplicacions avançades que requereixen possibles requisits de la xarxa. En aquesta tesi, es va dur a terme una revisió exhaustiva de les directrius estàndard per a les comunicacions V2X LTE i NR V2X, destacant especialment els modes de comunicació descentralitzats, com s'ha esmentat anteriorment. Posteriorment, es va dur a terme una campanya de simulació a nivell de sistema per configurar escenaris V2X segons les especificacions del Projecte d'Associació de Tercera Generació (3GPP). Els resultats obtinguts van mostrar que el rendiment del mode 4 en LTE és adequat per a serveis bàsics que no requereixen un alt rendiment, latències baixes o criteris estrictes de fiabilitat de la xarxa. En canvi, es va observar un rendiment millorat mitjançant el mode 2 NR V2X, permetent l'adaptació a serveis V2X avançats. A més, s'ha demostrat que les numerologies altes contribueixen a un millor rendiment, proporcionant una major diversitat de recursos i reduint la probabilitat que dos vehicles utilitzin els mateixos recursos per a les seves transmissions en mode descentralitzat. A més, es va trobar que a NR V2X una combinació adequada de numerologies, amplades de banda del canal i mida dels subcanals SL és crucial, depenent dels serveis V2X a implementar. Finalment, es va analitzar la incorporació de múltiples tecnologies d'accés a la ràdio (multi-RAT) per donar suport a serveis avançats i millorar la interoperabilitat mitjançant l'ús de tecnologies d'accés basades en LTE i NR, especialment en escenaris amb múltiples operadors de xarxa mòbil (MNO), diferents interfícies de connexió i modes de comunicació. / [EN] Fifth-generation mobile networks, commonly referred to as Fifth Generation (5G), are known for their robustness and surpassing the performance of their predecessors. They enable significant improvements in Key Performance Indicators (KPIs) to support advanced use cases and services. These KPIs are classified into three fundamental scenarios: Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communications (uRLLC), and massive Machine Type Communications (mMTC). The eMBB scenario focuses on services that require high transmission and reception rates to improve the user experience. In contrast, uRLLC addresses situations that demand strict low latency and high-reliability standards in the network. This need is particularly evident in real-time applications where prompt network response is essential. The mMTC scenario pertains to applications and services that require network support for massive device connectivity per square kilometer and enhanced energy efficiency. In particular, services and applications based on vehicular communications via the cellular network, referred to as Vehicle-to-everything (V2X) communications in the standard, are prominent. V2X communication refers to the communication between vehicles and infrastructures. When using mobile network standards such as Long Term Evolution (LTE) or New Radio (NR), it is referred to as Cellular-based V2X (C-V2X). Vehicle-to-Vehicle (V2V) communication enables packet exchange between vehicles, while Vehicle-to-Infrastructure (V2I) facilitates the exchange between vehicles and network infrastructures. Vehicle-to-Pedestrian (V2P) and Vehicle-to-Network (V2N) are two other types of communication that enable the transfer of packets between vehicles and devices carried by pedestrians and the exchange of V2X traffic between vehicles and the network, respectively. These types of communication enable the implementation of various services, from basic functions to advanced applications with potential network requirements. This thesis provides a comprehensive review of the standard guidelines for V2X LTE and NR V2X communications, with a particular focus on the decentralized communication modes mentioned above. Following this, system-level simulations were conducted to configure V2X scenarios according to 3GPP specifications. The results indicate that LTE mode 4 is sufficient for essential services that do not require high throughput, low latencies, or strict network reliability criteria. On the other hand, NR V2X mode 2 showed improved performance, allowing adaptation to advanced V2X services. High numerologies have been shown to contribute to better performance by providing greater resource diversity and reducing the probability that two vehicles use the same resources for their transmissions in decentralized mode. Additionally, it was found that in NR V2X, an adequate combination of numerologies, channel bandwidths, and sidelink subchannel sizes is crucial, depending on the V2X services to be implemented. Finally, the incorporation of multiple Radio Access Technologies (multi-RAT) was analyzed to support advanced services and improve interoperability through the use of LTE and NR-based access technologies, especially in scenarios with multiple Mobile Network Operators (MNOs), connection interfaces, and communication modes. / González Malla, EE. (2024). Performance Evaluation of 3GPP Standards for C-V2X Communications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/214051

Page generated in 0.0154 seconds