• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a 6-degree-of-freedom magnetically levitated instrument with nanometer precision

Gu, Jie 30 September 2004 (has links)
This thesis presents the design and fabrication of a novel magnetically levitated (maglev) device with six-degree-of-freedom motion capability at nanometer precision. The applications of this device are manufacture of nanoscale structures, assembly of microparts, vibration isolation of delicate instrumentation, and telerobotics. In this thesis, a single-moving stage is levitated by six maglev actuators. The total mass of the moving stage is 0.2126 kg. Three laser interferometers and three capacitance sensors are used to gather the position information. User interface and real-time control routines are implemented digitally on a VME PC and a digital-signal-processor (DSP) board. The underlying mechanical design and fabrication, electrical system setup, control system design, noise analysis, and test results are presented in this thesis. Test results show a quick step response in all six axes and a resolution of 2.5 nm rms in horizontal motion and 25 nm rms in vertical motion.
2

Development of a 6-degree-of-freedom magnetically levitated instrument with nanometer precision

Gu, Jie 30 September 2004 (has links)
This thesis presents the design and fabrication of a novel magnetically levitated (maglev) device with six-degree-of-freedom motion capability at nanometer precision. The applications of this device are manufacture of nanoscale structures, assembly of microparts, vibration isolation of delicate instrumentation, and telerobotics. In this thesis, a single-moving stage is levitated by six maglev actuators. The total mass of the moving stage is 0.2126 kg. Three laser interferometers and three capacitance sensors are used to gather the position information. User interface and real-time control routines are implemented digitally on a VME PC and a digital-signal-processor (DSP) board. The underlying mechanical design and fabrication, electrical system setup, control system design, noise analysis, and test results are presented in this thesis. Test results show a quick step response in all six axes and a resolution of 2.5 nm rms in horizontal motion and 25 nm rms in vertical motion.
3

Design and optimization of parallel haptic devices : Design methodology and experimental evaluation

Khan, Suleman January 2012 (has links)
The simulation of surgical procedures, in the case of hard tissues such as bone or teeth milling, using a haptic milling surgery simulator requires a haptic device which can provide high stiffness and transparency. To mimic a real milling process of hard tissue, such as for example creating a narrow channel or cavity, the simulator needs to provide force/torque feedback in 5–6 degrees of freedom (DOF). As described in this thesis, research has been performed to develop and optimize a haptic device that can provide high stiffness and force/torque capabilities to facilitate haptic interaction with stiff tissues.  The main contributions of this thesis are: (i) The use of a model-based design methodology for the design of haptic devices.  The proposed methodology is applied to a case study, i.e. the design and optimization of a haptic device based on parallel kinematics. Device requirements were elicited through dialogues with a prospective user from a neurosurgery clinic. In the conceptual design phase, different parallel concepts have been investigated and analyzed based on functional qualities such number of degrees of freedom, workspace size and force/torque capabilities. This analysis led to the selection of a specific 6 DOF kinematic structure for which dimension synthesis was performed including multi-objective optimization followed by control synthesis. Finally, a device prototype was realized and its performance verified. (ii) Optimization of the device for best kinematic and dynamic performance. For optimization, performance indices such as workspace-to-footprint ratio, kinematic isotropy and inertial indices were used. To cope with the problem of non-uniform units in the components of the Jacobian matrix, various normalization techniques were investigated. A new multi-objective optimization function is introduced to define the optimization problem, which is then resolved using multi-objective genetic algorithms. A sensitivity analysis of the performance indices against each design parameter is performed, as a basis for selecting a final set of design parameter values. (iii) A control strategy is investigated to achieve high transparency and stability of the device. The control strategy is based on careful analysis of the dynamics of the haptic device, computed torque feed-forward control and force control based on current feedback. (iv) Finally, experiments both separately in the lab and by using the device in a haptic milling surgery simulator were performed. Results from a face validity study performed in collaboration with orthopedists verify that the new haptic device enables high-performance force and torque feedback for stiff interactions. / QC 20120302
4

Simulation and Integration of a 6-DOF Controllable Multirotor Vehicle

Deans, Collin Andrew 07 August 2020 (has links)
The purpose of this thesis is to develop an existing design of a fully controllable multi-rotor vehicle toward simulating small satellite dynamics, enabling technology development to be accelerated and component failure risks to be mitigated by providing a testing platform with dynamics similar to those of small satellites in orbit. Evaluating dynamics-sensitive software and hardware components for use in small satellite operations has typically been relegated to simulated or physically constrained testing environments. More recently, researchers have begun using multi-rotor aerial vehicles to mimic the orbital motion of such satellites, further increasing simulation fidelity. The dynamical nature of multi-rotor vehicles allows them to accurately simulate the translational dynamics of a small satellite, but they struggle to accurately simulate rotational dynamics, as conventional multi-rotor vehicles' translational and rotational dynamics are coupled. In this thesis, an optimal design for a multi-rotor vehicle independently controllable in all six degrees of freedom is evaluated as a suitable simulation platform. The design of the proposed physical system is discussed and progress toward its construction is demonstrated. To facilitate future research endeavors, a simulation of the vehicle in a software-in-the-loop environment, using the Gazebo dynamics simulator, is developed and its performance evaluated. This simulation is then used to evaluate the vehicle's feasibility as a small-satellite dynamics simulator by tasking it with tracking dynamic position and attitude time histories representative of a small satellite. / Master of Science / When developing a spacecraft, it can be difficult to accurately test software and hardware that are sensitive to the spacecraft's motion. This difficulty arises because the space environment experienced by orbiting spacecraft allows them to move and rotate freely, and recreating this freedom of motion on earth requires large, expensive, and difficult-to-access test equipment. To make this testing more accessible, researchers have begun using quadcopter drones to mimic some aspects of a spacecraft's motion. While quadcopters can move like an orbiting spacecraft can, their designs do not allow them to rotate like an orbiting spacecraft can, thus providing an incomplete recreation of spacecraft motion. To correct this shortcoming, an existing drone design that is able to move and rotate simultaneously without fear of crashing is developed, with progress shown toward its construction. A software simulation of the drone is developed to help future researchers test software and algorithms before flying it on the physical drone. The simulation is then used to see how well the drone design can recreate the motions that a small spacecraft would experience.
5

Bangenerering för industrirobot med 6 frihetsgrader / Path generation in 6DOF for industrial robots

Forsman, Daniel January 2004 (has links)
<p>This thesis studies path generation for industrial robots of six degrees of freedom. A path is defined by connection of simple geometrical objects like arcs and straight lines. About each point at which the objects connect, a region, henceforth called a zone, is defined in which deviation from the defined path is permitted. The zone allows the robot to follow the path at a constant speed, but the acceleration needed may vary. </p><p>Some means of calculating the zone path as to make the acceleration continuous will be presented. In joint space the path is described by the use of cubic splines. The transformation of the Cartesian path to paths in joint space will be examined. Discontinuities in the second order derivatives will appear between the splines. </p><p>A few examples of different zone path calculations will be presented where the resulting spline functions are compared with respect to their first and second order derivatives. An investigation of the number of spline functions needed when, given an upper limit of deviation, the transformation back to Cartesian coordinates is made.</p>
6

Dynamics and Motion of a Six Degree of Freedom Robot Manipulator

2012 December 1900 (has links)
In this thesis, a strategy to accomplish pick-and-place operations using a six degree-of-freedom (DOF) robotic arm attached to a wheeled mobile robot is presented. This research work is part of a bigger project in developing a robotic-assisted nursing to be used in medical settings. The significance of this project relies on the increasing demand for elderly and disabled skilled care assistance which nowadays has become insufficient. Strong efforts have been made to incorporate technology to fulfill these needs. Several methods were implemented to make a 6-DOF manipulator capable of performing pick-and-place operations. Some of these methods were used to achieve specific tasks such as: solving the inverse kinematics problem, or planning a collision-free path. Other methods, such as forward kinematics description, workspace evaluation, and dexterity analysis, were used to describe the manipulator and its capabilities. The manipulator was accurately described by obtaining the link transformation matrices from each joint using the Denavit-Hartenberg (DH) notations. An Iterative Inverse Kinematics method (IIK) was used to find multiple configurations for the manipulator along a given path. The IIK method was based on the specific geometric characteristic of the manipulator, in which several joints share a common plane. To find admissible solutions along the path, the workspace of the manipulator was considered. Algebraic formulations to obtain the specific workspace of the 6-DOF manipulator on the Cartesian coordinate space were derived from the singular configurations of the manipulator. Local dexterity analysis was also required to identify possible orientations of the end-effector for specific Cartesian coordinate positions. The closed-form expressions for the range of such orientations were derived by adapting an existing dexterity method. Two methods were implemented to plan the free-collision path needed to move an object from one place to another without colliding with an obstacle. Via-points were added to avoid the robot mobile platform and the zones in which the manipulator presented motion difficulties. Finally, the segments located between initial, final, and via-points positions, were connected using straight lines forming a global path. To form the collision-free path, the straight-line were modified to avoid the obstacles that intersected the path. The effectiveness of the proposed analysis was verified by comparing simulation and experimental results. Three predefined paths were used to evaluate the IIK method. Ten different scenarios with different number and pattern of obstacles were used to verify the efficiency of the entire path planning algorithm. Overall results confirmed the efficiency of the implemented methods for performing pick-and-place operations with a 6-DOF manipulator.
7

Bangenerering för industrirobot med 6 frihetsgrader / Path generation in 6DOF for industrial robots

Forsman, Daniel January 2004 (has links)
This thesis studies path generation for industrial robots of six degrees of freedom. A path is defined by connection of simple geometrical objects like arcs and straight lines. About each point at which the objects connect, a region, henceforth called a zone, is defined in which deviation from the defined path is permitted. The zone allows the robot to follow the path at a constant speed, but the acceleration needed may vary. Some means of calculating the zone path as to make the acceleration continuous will be presented. In joint space the path is described by the use of cubic splines. The transformation of the Cartesian path to paths in joint space will be examined. Discontinuities in the second order derivatives will appear between the splines. A few examples of different zone path calculations will be presented where the resulting spline functions are compared with respect to their first and second order derivatives. An investigation of the number of spline functions needed when, given an upper limit of deviation, the transformation back to Cartesian coordinates is made.
8

Analysis and Design of a Test Apparatus for Resolving Near-Field Effects Associated With Using a Coarse Sun Sensor as Part of a 6-DOF Solution

Stancliffe, Devin Aldin 2010 August 1900 (has links)
Though the Aerospace industry is moving towards small satellites and smaller sensor technologies, sensors used for close-proximity operations are generally cost (and often size and power) prohibitive for University-class satellites. Given the need for low-cost, low-mass solutions for close-proximity relative navigation sensors, this research analyzed the expected errors due to near-field effects using a coarse sun sensor as part of a 6-degree-of-freedom (6-dof) solution. To characterize these near-field effects, a test bed (Characterization Test Apparatus or CTA) was proposed, its design presented, and the design stage uncertainty analysis of the CTA performed. A candidate coarse sun sensor (NorthStarTM) was chosen for testing, and a mathematical model of the sensor’s functionality was derived. Using a Gaussian Least Squares Differential Correction (GLSDC) algorithm, the model parameters were estimated and a comparison between simulated NorthStarTM measurements and model estimates was performed. Results indicate the CTA is capable of resolving the near-field errors. Additionally, this research found no apparent show stoppers for using coarse sun sensors for 6-dof solutions.
9

Evaluation of Coarse Sun Sensor in a Miniaturized Distributed Relative Navigation System: An Experimental and Analytical Investigation

Maeland, Lasse 2011 May 1900 (has links)
Observing the relative state of two space vehicles has been an active field of research since the earliest attempts at space rendezvous and docking during the 1960's. Several techniques have successfully been employed by several space agencies and the importance of these systems has been repeatedly demonstrated during the on-orbit assembly and continuous re-supply of the International Space Station. More recent efforts are focused on technologies that can enable fully automated navigation and control of space vehicles. Technologies which have previously been investigated or are actively researched include Video Guidance Systems (VGS), Light Detection and Ranging (LIDAR), RADAR, Differential GPS (DGPS) and Visual Navigation Systems. The proposed system leverages the theoretical foundation which has been advanced in the development of VisNav, invented at Texas A & M University, and the miniaturized commercially available Northstar sensor from Evolution Robotics. The dissertation first surveys contemporary technology, followed by an analytical investigation of the coarse sun sensor and errors associated with utilizing it in the near-field. Next, the commercial Northstar sensor is investigated, utilizing fundamentals to generate a theoretical model of its behavior, followed by the development of an experiment for the purpose of investigating and characterizing the sensor's performance. Experimental results are then presented and compared with a numerical simulation of a single-sensor system performance. A case study evaluating a two sensor implementation is presented evaluating the proposed system's performance in a multisensor configuration. The initial theoretical analysis relied on use of the cosine model, which proved inadequate in fully capturing the response of the coarse sun sensor. Fresenel effects were identified as a significant source of unmodeled sensor behavior and subsequently incorporated into the model. Additionally, near-field effects were studied and modeled. The near-field effects of significance include: unequal incidence angle, unequal incidence power, and non-uniform radiated power. It was found that the sensor displayed inherent instabilities in the 0.3 degree range. However, it was also shown that the sensor could be calibrated to this level. Methods for accomplishing calibration of the sensor in the near-field were introduced and feasibility of achieving better than 1 cm and 1 degree relative position and attitude accuracy in close proximity, even on a small satellite platform, was determined.
10

A concept for automated pick-and-place motion planning for industrial robots

Scheer, Johannes, Bodenburg, Sven 12 February 2024 (has links)
Nowadays, more and more flexible and efficient processes are required in modern industrial applications. In this field, robots are a key technoligy. In this paper a application is considered, where a 6-axis-industrial robot has to pick-and-place objects time efficiently in a constantly changing environment. Therefore, a concept for automated motion planning is presented, which is composed of two steps which are path planning and trajectory generation. In this paper suitable and established model-based methods are analyzed and chosen. Eventually, the suitability of the presented concept for the considered task is shown by implementing the concept in Matlab and applying it to a 6-axis articulated robot arm.

Page generated in 0.0294 seconds