• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 16
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The interactions of Troponin T with Troponin C, Troponin I and Tropomyosin

Fairhead, Giles January 2004 (has links)
No description available.
12

The role of phospholipase C isoforms in regulated differentiated function in vascular smooth muscle

Harrington, Louise Susan January 2003 (has links)
No description available.
13

The effects of oral creatine supplementation on health and disease

Kilduff, Liam January 2003 (has links)
No description available.
14

Carnosine metabolism in human skeletal muscle

Tallon, Mark J. January 2005 (has links)
No description available.
15

The exercise-induced expression of heat shock proteins in human skeletal muscle : the role of evaluated muscle and core temperature and the influence of training status

Morton, James Peter January 2006 (has links)
Skeletal muscle adapts to the stress of contractile activity with a change in gene expression to yield a family of highly conserved cytoprotective proteins known as heat shock proteins (HSPs). These proteins function to restore cellular homeostasis and to protect the cell against further insults. The exercise-induced stress response of rodent muscle is now relatively well defined. Comparable data from human studies, however, are extremely limited and the stress response of human skeletal muscle is far from understood. The main aims of this thesis were to characterise the time-course and magnitude of response of the exercise-induced production of the major HSP families in human skeletal muscle. The role of increased muscle and core temperature in contributing to the exercise-induced production of HSPs was also investigated. Finally, the effects of training status on baseline muscle content of the major HSP families and on the magnitude of the exercise-induced stress response was also examined. All of the exercise related studies undertaken in this thesis employed a 45 min running exercise protocol on a motorised treadmill at an intensity corresponding to the lactate threshold. This protocol was characterised as `non-damaging' in nature as it resulted in no overt structural or functional damage to the muscle of young untrained (27 ±5 years), recreationally active (25 ±2 years) or aerobically trained male subjects (27 ±6 years), as evidenced by indirect indicators of muscle damage such as circulating levels of creatine kinase and maximal quadriceps isometric muscle force. The time-course and magnitude of the exercise-induced response of the major HSP families were characterised in an active young (24 ±4 years) male population. Muscle biopsies were obtained from the vastus lateralis muscle immediately prior to and at 24 h, 48 h, 72 h and 7 days post-exercise. Exercise induced significant and individually variable increases in HSP70, HSC70 and HSP60 content with peak increases typically occurring at 48 h post-exercise. In contrast, exercise did not induce significant increases in either HSP27, aB-crystallin, manganese superoxide dismutase (MnSOD) protein content or the activity of superoxide dismutase (SOD) and catalase. When examining baseline protein levels, HSC70, HSP27 and aB-crystallin appeared consistently expressed between subjects whereas HSP70 and MnSOD displayed marked individual variation of up to 3 and 1.5 fold, respectively. These data demonstrate a differential effect of aerobic exercise on specific HSPs. Data also demonstrate an individual variation in both basal HSP levels and in the magnitude of the stress response to acute exercise, which may be related to individual differences in training status. The role of increased muscle and core temperature in contributing to the exercise induced production of HSPs were subsequently investigated. Active young males (23 A: 3 years) underwent a passive heating protocol of 1h duration during which the temperature of the core and vastus lateralis muscle were increased to similar levels as that occurring during exercise. One limb was immersed in a tank containing warm water whilst the contra-lateral limb remained outside the tank and was not exposed to heat stress. Muscle biopsies were obtained from the vastus lateralis of both legs immediately prior to and at 48 h and 7 days post-heating. The heating protocol induced significant increases in rectal and muscle temperature of the heated leg whilst muscle temperature of the non-heated limb showed no significant change following heating. The heating protocol failed to induce significant increases in muscle content of HSP70, HSC70, HSP60, HSP27, aB-crystallin, MnSOD protein content or the activity of SOD and catalase in either the heated or non-heated leg. Data demonstrate that increases in both systemic and local muscle temperature per se appear not to be mediating the exercise-induced production of HSPs and suggest that non-heat-stress factors associated with muscle contractile activity are of more importance in mediating this response. The influences of aerobic training status on the basal levels of HSPs and on the magnitude of the exercise-induced stress response were also investigated. Muscle biopsies were obtained from the vastus lateralis of young trained (28 ±6 years) and untrained (29 ±6 years) male subjects immediately prior to and at 48 h and 7 days post-exercise. When comparing muscles at rest, trained subjects had significantly higher levels of aB-crystallin, HSP60 and MnSOD compared with untrained subjects. Trained subjects also had a tendency for higher levels of HSP70, HSC70 and total SOD activity compared with untrained subjects. In contrast to the active population examined earlier, neither the trained nor untrained subjects exhibited a stress response to exercise. The absence of a stress response in trained subjects is likely due to the increase in baseline defences and the customary nature of the exercise protocol. The absence of a stress response in untrained subjects may be due to the failure of the exercise protocol to elicit a proposed critical threshold intensity that is required to induce increases in muscle HSP content. This thesis has provided novel data for the literature and has significantly advanced our understanding of the exercise-induced stress response of human skeletal muscle. Future research should examine the effects of exercise intensity on muscle HSP production and investigate the role of reactive oxygen species in contributing to the response. The wider implications of the exercise-induced production of HSPs, such as their potential cytoprotective properties against related and non-related stressors, should also be examined.
16

Collective effects in muscle contraction and cellular adhesion / Effets collectifs dans la contraction musculaire et adhésion cellulaire

Borja da rocha, Hudson 27 September 2018 (has links)
Deux systèmes biologiques distincts, les muscles squelettiques et les sites d'adhésion de cellules kératocytes en mouvement, sont considérés dans un même cadre en raison de la similitude profonde de leur structure et de leur fonctionnalité. La réponse passive de l'un et de l'autre peut être modélisée à l'aide d'un grand nombre d'unités multi-stables couplées par des interactions à longue portée, et exposées à un désordre spatial fixé et un bruit thermique/mécanique. Les interactions à longue portée dans de tels systèmes conduisent à une synchronisation malgré les fluctuations temporelles et spatiales. Bien que les deux systèmes biologiques considérés présentent des différences structurelles importantes, nous montrons que l'on peut identifier une structure de verre de spin sous-jacente commune. À la lumière de cette analogie, ces systèmes vivants semblent être proches de points critiques et, à cet égard, le désordre gelé, reflétant l’incommensurabilité stérique des unités parallèles, peut être fonctionnel. Un autre paramètre important fixant la réponse est la rigidité interne du système qui couple les unités entre elles. / Two biological systems, a half-sarcomere of a skeletal muscle and an adhesive cluster of a crawling keratocyte, are considered in parallel because of the deep similarity in their structure and functionality. Their passive response can be modeled by a large number of multi-stable units coupled through long-range interactions, frustrated by quenched disorder and exposed to thermal noise. In such systems, long-range interactions lead to synchronization, defying temporal and spatial fluctuations. We use a mean-field description to obtain analytic results and elucidate the remarkable ensemble-dependence of the mechanical behavior of such systems in the thermodynamic limit. Despite important structural differences between muscle cross-bridges and adhesive binders, one can identify a common underlying spin glass structure, which we fully exploit in this work. Our study suggests that the muscle machinery is fine-tuned to operate near criticality, and we argue that in this respect the quenched disorder, reflecting here steric incommensuration, may be functional. We use the analogy between cell detachment and thermal fracture of disordered solids to study the statistics of fluctuations during cellular adhesion. We relate the obtained results to recent observations of intermittent behavior involved in cell debonding, also suggesting near-criticality. In addition to the study of the equilibrium properties of adhesive clusters, we also present the first results on their kinetic behavior in the presence of time-dependent loading.

Page generated in 0.014 seconds