• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High performance resonant pulsed power supply for radio frequency applications

Ji, Chao January 2012 (has links)
In the past decade, there has been an increased demand to develop compact power supplies with high efficiency and high power density in order to revolutionise traditional approaches for high power radio frequency (RF) applications, such as long pulse modulators used for high energy physics acceleration experiments. Resonant technology has been considered to meet these challenges, due to its soft-switching characteristic at high operating frequency. The aim of this research project is to provide further knowledge in series resonant parallel loaded (SRPL) resonant converters for long pulse modulators, and to design advanced closed-loop control strategies for voltage pulse regulation. The proposed converter comprises three single phase SRPL resonant output stages, which guarantees a strong ability of overcoming the influence of tank unbalances and enables independent modulation procedures. A DQ modelling approach was utilized to analyse the converter. Based on it, a PI + repetitive control strategy was designed for voltage pulse regulation to obtain good dynamics and steady state performance. A combined frequency and phase shift modulation method was selected to control the converter so that soft-switching of semiconductor devices can be always achieved, even in the presence of large tank unbalances. Good correlation between simulation and experimental results has been demonstrated, which validates the converter circuit design, modelling approach, control strategy and modulation method
2

An experimental investigation into the electromagnetic compatibility aspects of high frequency power line communications

Fenton, David Richard January 2006 (has links)
Power line communications technology, long established for low data rate applications, is now charting new territory with respect to data rates and provided services. This can only be achieved by increasing PLC operating frequencies from the low frequency band (below 148.5 kHz) to the high frequency band (1 MHz and upwards). There is now only one technical barrier to widespread deployment - Electromagnetic Compatibility. Existing low voltage power networks are optimised for the safe supply of electrical energy. Low voltage cables are often pseudo co-axial in their cross section, but when high frequency signals are coupled onto the network, part of the signal will be radiated. There is therefore a potential for interference to be caused to legitimate users of the radio spectrum. This thesis, and the experimental program underlying it, seeks to quantify potential problems and to propose mechanisms by which they could be mitigated to the extent that wide scale deployment of PLC networks becomes possible. The first part of the thesis offers a detailed introduction to the topics of electricity supply networks, power line communications, modulation techniques and electromagnetic compatibility. Existing EMC standards are examined and although some do not directly cover power line communications networks, key principals are drawn for later use in standards development. The thesis then seeks to examine the mechanisms by which high frequency interference might be caused. Radio propagation modes are discussed and a clear technical distinction is drawn between localised interference from a single PLC network to an individual radio user, and cumulative interference from wide spread deployment of PLC systems. Both such scenarios are examined in detail. The experimental program IS described quantifying radiated signal strength regression from a number of power networks and at a number of operating frequencies within the high frequency band. In this context, signal strength regression is the rate at which electrical field strength reduces with increasing measurement distance. The experimental setup uses a conventional signal generator to supply single test frequencies of known power spectral density, which are coupled onto a power network. The subsequent radiated signal is received via a conventional antenna and radio receiver at a number of locations surrounding the power network at known distances, and signal regression is derived. The experiment was repeated for a number of different frequencies and at representative urban, suburban and rural locations. Indeed, the experimental technique was evolved over a number of months to allow increased portability of the signal receiving equipment, and hence the number of measurements that could be taken. From the experimental results, presented both In tabular and graphical format, a number of conclusions can be drawn. Firstly, based on these results, antenna factors in the order of 85 dB/m can be expected of power line communication networks. It can be concluded that the field strength regression to be anticipated from PLC networks is likely to be significantly below the -20 dB per decade 'free space' regression figure that has often been used in interference models. In fact a regression figure of -35 dB/decade IS more representative of ground wave propagated interference from PLC networks. It is also possible to conclude that the adoption of orthogonal frequency division multiplexing as a multi-carrier spectral technique offers specific advantages in EMC terms. Due to its nature, it is possible to apply a frequency 'mask' to an OFDM based PLC system. Such a mask might be static, applied on a national or regional basis in order to guarantee non-interference with specific frequencies, for example those used for emergency radio channels. It would also be possible to add a dynamic frequency mask, controllable on each PLC system, to mitigate interference with radio services operating within the PLC operating band.
3

Design and development of a direct methanol fuel cell for telecommunications

Joubert, Hardus 06 1900 (has links)
The demand for higher efficiency and cleaner power sources increases daily. The Direct Methanol Fuel Cells (DMFC) is one of those power sources that produces reliable electrical energy at high efficiencies and very low pollution levels. Remote telecommunication sites need power sources that can deliver reliable power. This dissertation informs the reader about the working principles of the DMFC and the materials it consists of. A good amount of theoretical background is also given on the DMFC, especially on the Membrane Electrode Assembly (MEA). Different membranes as well as their properties are discussed. Results from other researchers on DMFCs are also captured. A DMFC stack including a test rig, was built. The DMFC stack consisted of five single DMFC cells. Each cell contained an MEA, Gas Diffusion Layers (GDLS), highly corrosive resistant metal support grids, bipolar flow field plates and end plates. The DMFC stack was operated and tested in a test rig. The test rig held the air blower which supplied the cathode with the required oxidant (air), and the methanol solution tank plus its liquid pump. The liquid pump circulated the methanol solution through the anode side of the stack. It was observed that the DMFC is very susceptible to corrosion, especially if the methanol solution becomes conductive owing to solubility of C02 in it. Methanol itself is a corrosive substance. However the results obtained from the experiments clearly indicate that the DMFC can be implemented as an electrical power source for telecommunications.

Page generated in 0.079 seconds