131 |
The environmental fate of fungicide SN 539865Leake, Christopher R. January 1989 (has links)
No description available.
|
132 |
Assessing the bioavailability of cadmium in soils and implications for phytoremediationHutchinson, Julian J. January 2001 (has links)
No description available.
|
133 |
Generation of phosphorus bioavailability in runoff from a calcareous agricultural catchmentGodun, Oleh Serhiyovich January 1997 (has links)
No description available.
|
134 |
The uptake and extraction of heavy metals from contaminated soil by coppice woodlandMcGregor, Scott Douglas January 1999 (has links)
The research undertaken was designed to investigate the potential use of coppice woodland for the clean up and remediation of heavy metal contaminated soil. Particular attention was given to high yielding coppice woodland species, especially willow and poplar. This was because breeding and field trials have reported that some hybrid willow clones can produce biomass yields of up to 60 t ha-1 y-1. The experimental works undertaken comprised three experiments which have been referred to as the 'Field Studies', 'Pot Studies' and 'Hydroponic Studies' and describes the medium in which the trees were grown and studied. The experiments were devised to study the variation in the uptake of metals between different tree species growing in different environments. The findings of the studies generally indicate that metal uptake rates determined in the field were lower that the uptake levels recorded in the pot and hydroponic studies. These differences were attributed to the increased availability of the study metals in the pot and hydroponic studies. Zinc concentrations in the above ground tissue of willow determined from the three experiments ranged from 159 to 223 mg kg-1 in the field study, 281 to 2995mg kg-1 in the pot study and 40 to 5530 mg kg-1 in the hydroponic study. Zinc was the only metal accumulated to significant concentration within the biomass of fields samples. Zinc, copper, cadmium, nickel and chromium were accumulated in the biomass of seedlings grown in the pot studies and zinc, copper, cadmium, nickel, chromium and to a lesser extent lead were accumulated by some of the hydroponic study trees. Some of the uptake levels recorded were not dissimilar from accumulation levels reported in hyperaccumulater species and highlights the potential of some tree species to accumulate metals in above ground tissues (leaves, twigs and stem). The pot and hydroponic studies suffered high seedling fatality rates which were attributed to metal toxicity and/or salinity. These findings could indicate possible establishment problems when trying to plant trees on contaminated sites.
|
135 |
Fate and behaviour of isopropyl N-(3- chlorophenyl) carbamate (chlorpropham) herbicide in the environmentTirmazi, Syeda Huma January 1998 (has links)
Chapter two investigates the adsorption of chlorpropham on six different absorbents including three soil types; the adsorption-desorption of chlorpropham from soil including the development of an analytical method suitable for the analysis of chlorpropham residues in drinking water. The analytical method involved preconcentration of chlorpropham residues on a solid sorbent (C18) followed by elution with a suitable solvent to achieve an environmentally safe and sensitive method for the detection and quantification of chlorpropham. Octaedecyl silylbonded silica cartridges (C18) proved to be very efficient for the determination of chlorpropham residues with a high recovery and reproducibility of 97%. The adsorption study of chlorpropham was carried out on six different adsorbents including three soil types in an effort to find out their efficacy for the purification of chlorpropham polluted water. The studies were carried out using three types of soils - Downholland (peat), Midelney (clay), and Dreghorn (sand) - and charcoal, bark, wheat straw, at three different temperatures and concentrations. The results showed generally, that charcoal had the greater adsorption efficacy followed by tree bark, wheat straw, Downholland (peat), Midelney (clay), and Dreghorn (sand) soil under all investigated temperatures and concentrations. The desorption study was carried out to determine the extent of reversibility of the adsorption process for all the adsorbents under the same conditions of temperatures and concentrations. The results of the assessment indicated that desorption, in general, was more at higher temperature for all the studied adsorbents. However, for charcoal, adsorption was irreversible except at zero time at higher concentrations. For Downholland (peat), Midelney (clay) and tree bark, there was zero desorption at lower concentration levels.
|
136 |
The use of organic materials as amendments in the remediation of soils contaminated by lead, copper and zincNwachukwu, Olayinka Ibiwumi January 2007 (has links)
The effectiveness of using amendments in metal stabilization was determined, and their potential for remediation of contaminated soil was evaluated. A combined approach of evaluating soil and plant metal availability as well as microbial respiration was used as an indication of effectiveness of metal immobilization. This was done by sorption studies, incubation experiments in contaminated media, and greenhouse pot experiments. Batch sorption studies were conducted to evaluate the ability of bone meal, composts, peat, coir and wood bark to sorb Pb, Cu and Zn. Single sorption carried out over a metal concentration range of 0.1 mmol 1-1 using 0.001M and 0.1M Ca(NO3)2 as background electrolytes showed very high sorption of Pb, Cu and Zn by the amendments, but high background salt led to a reduction in the amount of metal sorbed by all amendments. Of the amendments tested, coir, compost and wood bark were most effective. Sorption was evaluated by applying the Langmuir equation, and maximum sorption values were calculated for all amendments. Theoretical maximum sorption of Pb was 87 mg g-1 (0.42 mmol g-1) by coir and green waste compost; Cu was 30 mg g-1 (0.47 mmol g-1) by green waste and general compost, while maximum Zn sorption was 14 mg g-1 (0.21 mmol g-1) in composts, closely followed by 13 mg g-1 (0.19 mmol g-1) in coir. Sorption mixed metal solutions of Pb, Cu and Zn was evaluated in a background salt of 0.001M Ca(NO3)2 only, either at equimolar concentrations of 0.1 mmol 1-1, equimolar concentrations of 1 mmol 1-1, or combinations of metals at either concentration. Metal sorption was reduced in the presence of other metals when compared with sorption in single metal solution. Pb sorption in equimolar solution of 0.1 mmol 1-1 was approximately 50% of that in single solution, Cu was 35%, while Zn was 40% if wood bark was not considered (wood bark sorption of Zn in low equimolar metal was not different from that in single Zn solution). The effect of metals on microbial respiration was evaluated in metal spiked amendments over a ten week period using metal solutions of Pb, Cu and Zn as contaminants. Pb, Cu and Zn toxicity led to an inhibition in CO2 evolved in all amendments, as addition of any amount of Pb, Cu or Zn led to a decrease I amount of CO2 evolved when compared with the non-contaminated amendments. The effect of increasing metal toxicity on CO2 evolution was reflected best in coir, where inhibition increased with an increase I metal concentration. In other contaminated amendments however, the inhibition was highly pronounced once there was metal contamination regardless of the metal concentration.
|
137 |
The behaviour of plutonium in artificially contaminated upland Welsh soilsStone, David Marcus January 1996 (has links)
No description available.
|
138 |
The application of lux-marked bacteria for terrestrial ecotoxicity testingPalmer, Gabrielle January 1999 (has links)
The introduction of lux genes, able to express bioluminescence, into terrestrial bacteria enabled the optimisation of a bioluminescence-based bioassay that was environmentally relevant. Individual assay parameters such as growth phase, cell washing, lyophilisation, pH tolerance and temporal response to a range of metal and xenobiotic pollutants were evaluated. The effects of a range of pollutants upon the metabolic response of the lux-marked organisms were assessed using declines in bioluminescence. The lux -based bioassay proved more sensitive to the sub-lethal effects of metal pollutants than tests relying on culturability. Uncontaminated soils were spiked with metal and xenobiotic solutions both as single pollutants and in combination with other contaminants. Relative toxicity of metal and xenobiotic pollutants in soil systems were investigated using ecotoxicity assays based upon lux-marked constructs of Rhizobium leguminosarum biovar trifolii (an important associative nitrogen fixer) and the respiration of the microbial community. The lux-marked bioassay proved to be more sensitive than the community microbial assay to the presence of multiple contaminants at sub-lethal concentrations. The relative toxicities of metal and organic xenobiotic compounds were shown to be time dependent and better represented using chronic assaying of lux-marked microorganisms. Following a field trial involving the application of paper mill sludge to land and subsequent crop failure a rapid diagnosis of soil pollutants was required. A suite of ecotoxicity assays including lux-based bioassays, respirometry and enzyme activity were used to assess the toxicity of paper mill sludge to the soil microbial biomass. The selected lux-marked soil bacteria showed potential for use as rapid, field-based screening techniques to provide early warning of the potential hazards of waste application.
|
139 |
Trace elements in soil pore water : a comparison of sampling methodsDi Bonito, Marcello January 2005 (has links)
This thesis examined a range of methods for sampling soil pore water to investigate the chemistry of trace elements. In particular, the study assessed whether Rhizon samplers, centrifugation, high pressure squeezing and soil suspensions in simulated pore water can be viable approaches for obtaining representative samples of equilibrated soil pore water. Results for metal solubility and speciation were interpreted in terms of both soil morphological effects on trace metal dynamics and artefacts introduced at various stages during sample preparation and handling. The main soil used in the study was an organic-rich sandy silt from a site which has served as a sewage re-processing facility for almost a century. This soil was chosen because of its importance as a long-term repository for metal-enriched sludge applied to arable land, providing a suitable medium on which to study trace metal behaviour. Pore waters were extracted and analysed for major and trace cations and anions, pH, Dissolved Inorganic Carbon (DIC) and Dissolved Organic Carbon (DOC) at two different temperatures (5 degrees Celsius and 15 degrees Celsius), in order to evaluate the extent of bacterial activity, organic decomposition and their consequences on solute composition, during pore water extractions. Speciation was estimated from analysis of pore water chemistry using two software packages (PHREEQCi and WHAM-VI). Pore waters showed different ranges of concentration between the various methods. Different mechanisms and/or chemical reactions were involved during the different extractions; a range of processes was identified, mainly dominated by metal complexation by humus acids and redox reactions. Results revealed that the soil studied was able to partially buffer the free ion activities of the metal ions in pore water with increasing dilutions, but demonstrated virtually no ability to buffer DOC. Identification of the source (i.e. location of pore space) of water extracted was also investigated using water with different isotopic composition (18O/16O). Evidence showed that centrifugation was not able to differentiate between more and less mobile water at FC conditions, rather enhancing the mixing between the two pools of water (native and labelled) by and apparent process of 'infusion'. By contrast, Rhizon samplers appeared to sample water preferentially from the more accessible pool (extra-aggregate), which proved to have a composition showing incomplete mixing with the native water. The results also suggested that mixing of the two pools was rather fast and that was almost completely attained prior to pore water extraction. The study established that the most important factors affecting pore water chemistry during extraction are the conditions to which the samples are exposed during the extraction process. For these reasons Rhizon samplers should be used as a disposable device, and are only applicable for use in high soil moisture soil contents. In contrast, they present no 'side-effects' (providing enough equilibration time) if M2+ (free ion activity) were needed as opposed to Msol (total metal concentration in pore water), as often required in environmental studies. Centrifugation is optimal for bulk solution studies, or when homogenisation represents a key experimental point; targeted studies are also possible. Soil squeezing is subject to severe limitations in the case of prolonged extractions of biologically active soils, due to the effects of anaerobism. Squeezing should only be used for 'fast' extractions of soils. Finally, batch extractions are well suited to studies on M2+ equilibria, but more studies are needed to clarify the effect of soil: solution ratio on metal and DOC solubility.
|
140 |
Studies in the application of supercritical fluid extraction to carbamate insecticide residue analysisStuart, Iain A. January 1997 (has links)
No description available.
|
Page generated in 0.0249 seconds