• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phytoremediation potential of sweet sorghum in mercury-contaminated soil

Dauda, Idris Oladimeji 10 1900 (has links)
The continuity of the menace of mercury (Hg) is due to the continuous production and use of Hg and Hg containing products. Toxicity is just an outfall of use and exposure. Anthropogenic activities such as coal combustion and artisanal and small-scale gold mining have led to increasing Hg contamination and is the major source of Hg pollution into the environment that needs to be remediated. This study aimed to assess the phytoextraction capability of sweet sorghum (Sorghum bicolor) under different fertiliser treatments in Hg-contaminated soil. The potted experiment in a controlled environment included control S. bicolor and three phytoremediation treatments, i.e., Hg only; the addition of 4:1 green compost and; the addition of 0.2% NPK fertiliser. There were conspicuous signs of Hg phytotoxicity in plants with Hg only, namely wilting, senescent, inhibition of growth, and photosynthesis. There was stunted growth, but healthy plants observed in the treatment with the addition of green compost towards the end (day 60) of exposure. However, S. bicolor grew well until the last day of exposure in the treatment with the addition of 0.2% NPK fertiliser. Thus, this treatment showed the most effective phytoextraction potential of S. bicolor in Hg-contaminated soil. The effectiveness of S. bicolor in reducing the level of mercury was best assessed in the Hg bioavailable concentration in the spiked soil in which the Hg + NPK treatment has the lowest (0.77 mg kg−1). That resulted in the highest uptake (84.31%) percentage of Hg concentration recorded in the treatment with the addition of 0.2% NPK fertiliser compared to the other two treatments. The results suggest that the proportion of phosphate in the NPK fertiliser used, plays a huge role in the phytoextraction of Hg in the contaminated soil by S. bicolor. The Translocation Factor (TF) and Bioconcentration Factor (BCF), although higher within Days 20 and 40, was greater than 1 at the end of the exposure period suggesting a high probability that Hg was significantly transferred to the aerial parts of the plants. This is regarded as typical hyperaccumulator plant species. While S. bicolor was able to reduce the level of Hg in all three treatments, Hg + NPK treatment gave overall best results in physiological growth, the uptake, and reducing the level of Hg bioavailable in the spiked soil in terms of the effectiveness of phytoremediation method. / Environmental Sciences / M. Sc. (Environmental Science)

Page generated in 0.0215 seconds