61 |
Behaviour and control of evaporative emissions systems for spark ignition enginesLuff, David Christopher January 2002 (has links)
No description available.
|
62 |
The development and integration of systems models to simulate engine and vehicle performanceDow, Peter Ivan January 2001 (has links)
No description available.
|
63 |
The robustness of spark ignition engine performance to sources of variationRichardson, Peter James January 2002 (has links)
No description available.
|
64 |
Optical ranging and feature extractonTaylor, Robert January 2001 (has links)
No description available.
|
65 |
Simulation in automated guided vehicle system designUjvaÌri, SaÌndor January 2003 (has links)
No description available.
|
66 |
Reverse engineering an active eyeSchmidt-Cornelius, Hanson January 2002 (has links)
No description available.
|
67 |
A figure of merit for satellite constellation designEves, Stuart January 2002 (has links)
The purpose of this research has been to develop a technique by which satellite constellations in different classes of orbit may be realistically compared. Previous work on constellation design has tended to focus on minimising the number of satellites required to provide coverage of the Earth. The variations in satellite vehicle design, which result from the use of different orbits, have, in general, been neglected in such analyses. The purpose of this research is to bridge this gap between constellation design and satellite design using a Figure of Merit. This Figure of Merit incorporates the coverage value provided by the satellite constellation, measured in terms of percentage coverage time, and the overall mass of the satellites which are required to provide this coverage. The coverage value is measured against a specific requirement, which is defined geographically, and which may be weighted by the user to reflect the relative importance of different regions. This allows arbitrary, asymmetric, real-world requirements to be adequately represented. This also marks something of a departure from previous work, in that the goal of much constellation design work has been to provide un-weighted coverage of the entire globe. Simplified mass models are developed for generic communications and surveillance satellites in a variety of orbits, and are then used to calculate the Figure of Merit for individual satellites. It is shown that the best solution depends crucially upon the geographical distribution of the requirement, and other user-defined parameters, such as the minimum elevation angle which can be tolerated. It is also shown that, for certain typical requirements, the Figure of Merit correctly identifies geostationary orbit (GEO) and low Earth orbit (LEO) as having particular advantages. iii The technique of characterising the requirement geographically may also be used as a means of optimising the orbital parameters of the candidate constellations, and a preliminary description of this procedure is also provided. The Figure of Merit Technique is then applied to representative communications satellite constellations in order to demonstrate its ability to differentiate between candidate options. The Figure of Merit technique is also used to investigate the possibility of using a surveillance satellite at very low altitudes.
|
68 |
Implicit multi-block Euler/Navier-Stokes simulations for hovering helicopter rotorZhong, Bowen January 2003 (has links)
A three dimensional implicit multiblock Navier-Stokes solver for hovering rotor vortical flow simulations has been developed. The governing equations used are cast in an attached blade rotating frame. Two formulations of the governing equations using the relative or absolute velocity as variables respectively are employed and investigated. The Osher's approximate Riemann solver is used for the convective fluxes evaluation. A modified MUSCL scheme is employed for improving the accuracy of the discretisation for the in viscid fluxes. A Block Incomplete Lower and Upper Decomposition (BILU) is adopted for solving the linear system resulted from the use of an implicit scheme. Special treatment for the terms, including extra flux terms and source terms, arising from the non-inertial reference system are implemented. A multiblock technique is used to obtain the exibility for quality grid generation. The suitability of different grid topologies for vortex wake capturing is demonstrated. Numerical tests show that significant improvement in computational efficiency is achieved by utilising the BILU implicit scheme in both fixed wing and hovering rotor calculations. Numerical simulations also demonstrate Navier-Stokes solutions give more accurate results than that from Euler solutions, especially in transonic tip speed cases. Computed results including surface pressure distributions and tip vortex trajectories are compared with the experimental data, which shows that the developed solver and the numerical scheme can simulate hovering rotor flows with good accuracy.
|
69 |
Development of a design methodology for transport aircraft variable camber flaps suitable for cruise and low-speed operationsAmmoo, Mohd Shariff January 2003 (has links)
This thesis describes the development of a generic design methodology for variable camber flap systems for transport aircraft, intended to be used for cruise and low-speed operations. The methodology was structured after several revisions were performed on conventional high-lift device design methodologies for existing transport aircraft. The definition and detail explanations are given at every phase of the methodology. A case study was performed in order to give an example of the implementation of the methodology where a transport aircraft called A TRA, a design study from previous PhD report, was taken as a model. Experimental work could not be performed, due to budget constraints, so the case study was only carried out using computer-based analyses. Software packages such as MSES-code (a Computational Fluid Dynamic software), CATIA and PATRANINASTRAN were used for this case study to analyse aerodynamic characteristics, layout as well as simulation and structure analyses respectively. The results obtained showed that it was practically feasible to deploy such a high-lift device to transport aircraft when the effect from aerodynamic loads gave minimum effect on structural deformation. The deflections of the flap as well as spoilers under critical loads were below the allowable limits, which had a minimal effect due to the additional lift force generated from the movable surfaces.
|
70 |
Water flow on accreting ice surfacesCharpin, Jean P. F. January 2002 (has links)
Ice growth may rapidly degrade the aerodynamic performance of an aircraft. It can also severely damage structures such as communication towers or power lines. Subsequently, de-icing and anti-icing systems have been developed and a number of codes designed to predict ice shapes. When ice accretion starts, two different types of ice can appear, depending on the temperature and conditions. All of the incoming fluid may freeze almost instantaneously and turn into rime ice. Alternatively, a fraction of the incoming fluid may freeze and turn into glaze ice while the other part remains liquid and may flow over the ice. Previous work on ice accretion has mainly targeted the ice shape and neglected the owing water layer. The present study focuses on this. A set of governing equations is derived for both rime ice growth and coupled ice growth and water flow. When rime ice accretes, a mass balance is used to calculate the shape. In the presence of both ice and water, the ice growth is governed by an energy balance and the water flow by a mass balance. These equations are solved numerically for the water flow alone and the coupled ice growth and water flow for two- and three-dimensional at inclined planes. The behaviour of both ice and water is studied. The model is then extended to deal with arbitrary substrates and solutions are sought for industrially important applications such as ice accretion on power lines or aerofoils. This research work forms part of the ICECREMO project. ICECREMO is a three-dimensional ice accretion and water flow code developed collaboratively by DERA, British Aerospace, Rolls Royce, GKN Westlands Helicopters and Cranfield University under the auspices of the UK department of Trade and Industry.
|
Page generated in 0.0141 seconds