21 |
Adjoint-based geometry optimisation with applications to automotive fuel injector nozzlesPetropoulou, Stamatina January 2006 (has links)
Methods of Computational Fluid Dynamics (CFD) have matured, over the last 30 years, to a stage where it is possible to gain substantial insight into fluid flow processes of engineering relevance. However, the motives of fluid dynamic engineers typically go well beyond the level of improved understanding, to the pragmatic aim of improving the performance of the engineering systems in consideration. It is in recognition of these circumstances that the present thesis investigates the use of automated design optimisation methodologies in order to extend the power of CFD as an engineering design tool. Optimum design problems require the merit or performance of designs to be measured explicitly in terms of an objective function. At the same time, it may be required that one or more constraints should be satisfied. To describe allowable variations in design, shape parameterisation using basic geometric entities such as straight lines and arcs is employed. Taking advantage of previous experience in the research group concerning cavitating flows, a fully automated method for nozzle design/optimisation was developed. The optimisation is performed by means of discharge coefficient (Cd) maximisation. The objective is to design nozzle hole shapes that maximise the nozzle Cd for a given basic nozzle geometry (i.e. needle and sac profile) and reduce or even eliminate the negative pressure region formed at the entry of the injection hole. The deterministic optimisation model was developed and implemented in the in-house RANS CFD code to provide nozzle shapes with pre-defined flow/performance characteristics. The required gradients are calculated using the continuous adjoint technique. A parameterisation scheme, suitable for nozzle design, was developed. The localised region around the hole inlet, where cavitation inception appears, is parameterised and modified during the optimisation procedure, while the rest of the nozzle remains unaffected. The parameters modifying the geometry are the radius of curvature and the diameter of the hole inlet or exit as well as the relative needle seat angle. The steepest descent method has been used to drive the calculated gradients to zero and update the design parameters. For the validation of the model two representative inverse design cases have been selected. Studies showing the behaviour of the model according to different numerical and optimisation parameters are also presented. For the purpose of optimising the geometries, a cost function intended to maximise the discharge coefficient was defined. At the same time it serves the purpose of restructuring geometries which have controlled or eliminated cavitation inception in the hole entrance. This is identified in the steady-state mode by reduction of the volume of negative relative pressure appearing in the hole entrance. Results of cavitation control on some representative nozzle geometries show significant benefits gained by the use of the developed method. This is mainly because the developed model performs optimisation on numerous parametric combinations automatically. Results showed that, by using the proposed method, geometries with larger Cd values can be achieved and the cavitation inception can, in some cases, be completely eliminated. Cases where all the parameters were combined for redesign the geometry required less modification to predict larger Cd values than cases where each parameter was modified individually. This is an important result since manufacturers are seeking improvement in the performance of products resulting from the least geometry modifications.
|
22 |
Experimental investigation of gasoline-dimethyl ether dual fuel CAI combustion with internal EGRZhang, Haofan January 2011 (has links)
A new dual fuel Controlled Auto-Ignition (CAI) combustion concept was proposed and researched for lower exhaust emissions and better fuel economy. The concept takes the advantage of the complementary physical and chemical properties of high octane number gasoline and high cetane number Di-Methyl Ether (DME) to organize the combustion process. Homogeneous gasoline/air mixture is utilized as the main combustible charge, which is realised by a low-cost Port Fuel Injection (PFI) system. Pressurised DME is directly injected into cylinder via a commercial Gasoline Direct Injection (GDI) injector. Flexible DME injection strategies are employed to realise the controlled auto ignition of the premixed charge. The engine is operated at Wide Open Throttle (WOT) in the entire operating region in order to minimize the intake pumping loss. Engine load is controlled by varing the amount of internal Exhaust Gas Recirculation (iEGR) which is achieved and adjusted by Positive Valve Overlap (PVO) and/or exhaust back pressure, and exhaust rebreathing method. The premixed mixture can be of either stoichiometric air/fuel ratio or fuel lean mixture and is heated and diluted by recycled exhaust gases. The use of internal EGR is considered as a very effective method to initiate CAI combustion due to its heating effect and moderation of the heat release rate by its dilution effect. In addition, the new combustion concept is compared to conventional SI combustion. The results indicate that the new combustion concept has potential for high efficiency, low emissions, enlargement of the engine operational region and flexible control of CAI combustion.
|
23 |
Numerical and physical analysis of liquid break-up and atomisation relating to pressure-swirl gasoline direct injectionHeather, Andrew January 2007 (has links)
This thesis presents detailed fuel spray investigations relating to an automotive Gasoline Direct Injection (GDI) pressure-swirl injector, employing a combination of numerical and physical analyses. The emphasis is placed on the near-nozzle in recognition that all later flow processes are dominated by this critical region. To enable the technology to maximise its potential, it is essential to further our understanding of the fundamental flow physics that govern the injection process, which remain largely unknown. The complexity of the spray process has led to many avenues of research. Simplified models are particularly suitable for parametric studies, allowing fast computation of some of the most important design parameters, such as nozzle discharge coefficient, cone angle and initial velocity. More complex methods such as Computational Fluid Dynamics (CFD) offer significantly more detail including the temporal and spatial evaluation of the flow field and fuel distribution, but at the cost of often lengthy computational time, and the need to tune models against physical evidence. Unfortunately none are able to describe all aspects of the injection event simultaneously. A considerable body of existing experimental data gathered under atmospheric conditions has been condensed and carefully presented to provide a comprehensive picture of injector operation. This comprises global spray performance data, spray imaging, and droplet velocity and size maps as a function of time after the Start Of Injection (SOl). These serve to provide a means to develop physical models and to correlate model predictions. Particular attention is drawn to the challenges faced by numerical methods to successfully predict the complex spray behaviour. A fundamental computational study employing the Volume Of Fluid (VOF) method describes droplet break-up under controlled conditions. By varying the Weber number of the flow the expected break-up mechanisms are recovered, and the numerics and case set-up tuned to offer a practical balance between the resource burden and solution accuracy. This paved the way to a detailed 3-D transient analysis of the near-nozzle region of a pressure-swirl injector. Computed results clearly identify the consecutive phases of the fuel spray development, from the initial unsteady jet through to the stable, swirling hollow cone formation. Comparison with experimental measurements revealed that the computational approach is able to capture the main qualitative features of the spray process.
|
24 |
Etude expérimentale et modélisation cinétique de l’oxydation de biocarburants : impact sur les émissions de polluants (carbonylés et hydrocarbures aromatiques polycycliques) / Experimental study and kinetic modeling of the oxidation of biofuels : impact on emissions of pollutants (carbonyl compounds and polycyclic aromatic hydrocarbons)Shahla, Roya 07 December 2015 (has links)
Le secteur des transports est soumis à des réglementations sévères visant à limiter les émissions polluantes à l’échappement. Les biocarburants ont reçu une attention particulière en tant que carburant de substitution ou additif aux carburants traditionnels dans l’espoir de remédier aux problèmes de l’épuisement des ressources fossiles et des émissions de certains polluants. Cette thèse a pour objectif principal d’étudier l’impact de l’incorporation des biocarburants oxygénés ou synthétiques aux carburants traditionnels sur les émissions de polluants non réglementés à savoir les composés carbonylés (aldéhydes et cétones) et les hydrocarbures aromatiques polycycliques (HAPs) adsorbés sur la suie. Dans un premier temps, une étude a été menée dans une chambre de combustion interne. Les prélèvements des gaz à l’échappement suivis par les analyses chromatographiques en phase liquide ont permis d’évaluer l’effet de l’additivation du carburant sur les émissions de composés carbonylés. Une deuxième étude a été menée au moyen d’un brûleur à flamme plate permettant de collecter des suies de flammes riches dans des conditions stabilisées. Les mesures effectuées ont permis de déterminer l’effet de l’incorporation des biocarburants oxygénés au carburant sur la production de suie et le contenu d’HAPs adsorbés. Ce travail a été complété par l’étude de la cinétique d’oxydation de trois additifs oxygénés à l’état pur en réacteur auto-agité à pression atmosphérique et dans un large domaine de températures (530-1280 K) et de richesses (0,5-4). Les profils de concentration des réactifs, produits et principaux intermédiaires stables ont été obtenus par spectrométrie infrarouge à transformée de Fourrier (IRTF) et chromatographie en phase gazeuse. Ces résultats ont été ensuite confrontés aux profils d’espèces obtenus par simulation, à l’aide des modèles cinétiques d’oxydation disponibles dans la littérature. / The transport sector is subject to strict regulations aiming at limiting pollutants emissions. Biofuels have received particular attention as alternative fuel or additive to traditional fuels for remedying two issues: the depletion of fossil resources and emissions of certain pollutants. In this work we studied the impact of blending conventional fuels with synthetic or oxygenated biofuels on the emissions of non-regulated pollutants, namely carbonyl compounds (aldehydes and ketones) and polycyclic aromatic hydrocarbons (PAHs) adsorbed on soot. Firstly, the carbonyl compounds emissions were studied using an internal combustion engine. The carbonyls were collected at the exhaust of a diesel engine running with biofuel blends and analyzed using high performance liquid chromatography. Secondly, the impact of blending the conventional fuel with oxygenated biofuels on soot formation and adsorbed PAHs were studied using a flat flame burner under well stabilized conditions. This work was completed by the study of the kinetics of oxidation of three oxygenated additives in a jet-stirred reactor at atmospheric pressure, over the temperature range 530-1280 K and for different equivalence ratios (0.5-4). The concentration profiles of reactants, products and main stable intermediates were obtained by probe sampling and gas analyses including Fourier transform infrared spectroscopy (FTIR) and gas phase chromatography. These results were then compared to simulated species concentration profiles obtained using oxidation kinetic models available from the literature.
|
Page generated in 0.0222 seconds