• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 29
  • 12
  • Tagged with
  • 429
  • 175
  • 58
  • 53
  • 33
  • 22
  • 20
  • 18
  • 17
  • 15
  • 14
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Learning to co-operate in multi-agent systems

Kostiadis, Kostas January 2003 (has links)
No description available.
262

The low-level guidance of an experimental autonomous vehicle

Pears, Nicholas Edwin January 1989 (has links)
This thesis describes the data processing and the control that constitutes a method of guidance for an autonomous guided vehicle (AGV) operating in a predefined and structured environment such as a warehouse or factory. A simple battery driven vehicle has been constructed which houses an MC68000 based microcomputer and a number of electronic interface cards. In order to provide a user interface, and in order to integrate the various aspects of the proposed guidance method, a modular software package has been developed. This, along with the research vehicle, has been used to support an experimental approach to the research. The vehicle's guidance method requires a series of concatenated curved and straight imaginary Unes to be passed to the vehicle as a representation of a planned path within its environment. Global position specifications for each line and the associated AGV direction and demand speed for each fine constitute commands which are queued and executed in sequence. In order to execute commands, the AGV is equipped with low level sensors (ultrasonic transducers and optical shaft encoders) which allow it to estimate and correct its global position continually. In addition to a queue of commands, the AGV also has a pre-programmed knowledge of the position of a number of correction boards within its environment. These are simply wooden boards approximately 25cm high and between 2 and 5 metres long with small protrusions ("notches") 4cm deep and 10cm long at regular (Im) intervals along its length. When the AGV passes such a correction board, it can measure its perpendicular distance and orientation relative to that board using two sets of its ultrasonic sensors, one set at the rear of the vehicle near to the drive wheels and one set at the front of the vehicle. Data collected as the vehicle moves parallel to a correction board is digitally filtered and subsequently a least squares line fitting procedure is adopted. As well as improving the reliability and accuracy of orientation and distance measurements relative to the board, this provides the basis for an algorithm with which to detect and measure the position of the protrusions on the correction board. Since measurements in three planar, local coordinates can be made (these are: x, the distance travelled parallel to a correction board; and y,the perpendicular distance relative to a correction board; and Ɵ, the clockwise planar orientation relative to the correction board), global position estimation can be corrected. When position corrections are made, it can be seen that they appear as step disturbances to the control system. This control system has been designed to allow the vehicle to move back onto its imaginary line after a position correction in a critically damped fashion and, in the steady state, to track both linear and curved command segments with minimum error.
263

An evolutionary computing approach to motor learning with an application to robot manipulators

Sullivan, J. Charles W. January 2001 (has links)
No description available.
264

Intelligent control strategies for an autonomous underwater vehicle

Craven, Paul Jason January 1999 (has links)
The dynamic characteristics of autonomous underwater vehicles (AUVs) present a control problem that classical methods cannot often accommodate easily. Fundamentally, AUV dynamics are highly non-linear, and the relative similarity between the linear and angular velocities about each degree of freedom means that control schemes employed within other flight vehicles are not always applicable. In such instances, intelligent control strategies offer a more sophisticated approach to the design of the control algorithm. Neurofuzzy control is one such technique, which fuses the beneficial properties of neural networks and fuzzy logic in a hybrid control architecture. Such an approach is highly suited to development of an autopilot for an AUV. Specifically, the adaptive network-based fuzzy inference system (ANFIS) is discussed in Chapter 4 as an effective new approach for neurally tuning course-changing fuzzy autopilots. However, the limitation of this technique is that it cannot be used for developing multivariable fuzzy structures. Consequently, the co-active ANFIS (CANFIS) architecture is developed and employed as a novel multi variable AUV autopilot within Chapter 5, whereby simultaneous control of the AUV yaw and roll channels is achieved. Moreover, this structure is flexible in that it is extended in Chapter 6 to perform on-line control of the AUV leading to a novel autopilot design that can accommodate changing vehicle pay loads and environmental disturbances. Whilst the typical ANFIS and CANFIS structures prove effective for AUV control system design, the well known properties of radial basis function networks (RBFN) offer a more flexible controller architecture. Chapter 7 presents a new approach to fuzzy modelling and employs both ANFIS and CANFIS structures with non-linear consequent functions of composite Gaussian form. This merger of CANFIS and a RBFN lends itself naturally to tuning with an extended form of the hybrid learning rule, and provides a very effective approach to intelligent controller development.
265

The investigation of a knowledge based system architecture in the context of a subsea robotic application

Lane, David M. January 1986 (has links)
No description available.
266

Motion planning for manipulators using distributed search

Quinn, Andrew W. January 1993 (has links)
No description available.
267

Digital control techniques for electro-hydraulic servosystems

Plummer, Andrew Robert January 1991 (has links)
No description available.
268

Technological trajectories and emerging production paradigms : robotic assembly as an example of flexible manufacturing

Tidd, Joseph January 1989 (has links)
No description available.
269

Pneumatic motion control systems for modular robots

Moore, Philip R. January 1986 (has links)
This thesis describes a research study in the design, implementation, evaluation and commercialisation of pneumatic motion control systems for modular robots. The research programme was conducted as part of a collaborative study, sponsored by the Science and Engineering Research Council, between Loughborough University and Martonair (UK) Limited. Microprocessor based motion control strategies have been used to produce low cost pneumatic servo-drives which can be used for 'point-to-point' positioning of payloads. Software based realtime control strategies have evolved which accomplish servo-controlled positioning while compensating for drive system non-linearities and time delays. The application of novel compensation techniques has resulted in a significant improvement in both the static and dynamic performance of the drive. A theoretical foundation is presented based on a linearised model of a pneumatic actuator, servo-valve, and load system. The thesis describes the design and evolution of microprocessor based hardware and software for motion control of pneumatic drives. A British Standards based test-facility has allowed control strategies to be evaluated with reference to standard performance criteria. It is demonstrated in this research study that the dynamic and static performance characteristics of a pneumatic motion control system can be dramatically improved by applying appropriate software based realtime control strategies. This makes the application of computer controlled pneumatic servos in manufacturing very attractive with cost performance ratios which match or better alternative drive technologies. The research study has led to commercial products (marketed by Martonair Ltd), in which realtime control algorithms implementing these control strategy designs are executed within a microprocessor based motion controller.
270

Force feedback in remote tele-manipulation

Bicker, Robert January 1989 (has links)
It is becoming increasingly necessary to carry out manual operations in environments which are hazardous to humans - using remote manipulator systems that can extend the operators reach. However, manual dexterity can become severely impaired due to the complex relationship that exists between the operator, the remote manipulator system and the task. Under such circumstances, the introduction of force feedback is considered a desirable feature, and is particularly important when attempting to carry out complex assembly operations. The dynamic interaction in the manmachine system can significantly influence performance, and in the past evaluation has been largely by comparative assessment. In this study, an experimental remote manipulator system, or tele-manipulator system, has been developed which consists of three electrically linked planar manipulator arms, each with three degrees of freedom. An articulated 'master' arm is used to control an identical 'slave' arm, and independently, a second kinematically and dynamically dissimilar slave arm. Fully resolved Generalized Control has been demonstrated using a high speed computer to carry out the necessary position and force transformations between dissimilar master and slave arms in realtime. Simulation of a one degree of freedom master-slave system has also been carried out, which includes a simple model of the human operator and a task based upon a rigid stop. The results show good agreement with parallel experimental tests, and have provided a firm foundation for developing a fully resolved position/position control scheme, and a unique way of backdriving the master arm. Preliminary tests were based on a peg-in-hole transfer task, and have identified the effect on performance of force reflection ratio. More recently a novel crank-turning task has been developed to investigate the interaction of system parameters on overall performance. The results obtained from these experimental studies, backed up by simulation, demonstrate the potential of computer augmented control of remote manipulator systems. The directions for future work include development of real-time control of tele-robotic systems and research into the overall man-machine interaction.

Page generated in 0.0171 seconds