• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 3
  • Tagged with
  • 47
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Methane gas hydrate morphology and its effect on the stiffness and damping of some sediments

Rees, Emily V. L. January 2009 (has links)
Gas hydrates are ice–like compounds found in deep sea sediments and permafrosts. Concise detection and quantification of natural methane gas hydrate deposits, will allow for a more robust assessment of gas hydrate as a potential energy resource or natural geohazard. Current seismic methods, used to identify and quantify gas hydrates, have proved to be unreliable in providing accurate information on the extent of natural gas hydrate deposits, due to the lack of understanding on how gas hydrate affects the host sediment. Direct measurement of some hydrate bearing sediment properties has been made possible in recent years through advances in pressure coring techniques, but methods for dynamically testing these samples at in–situ pressures are still unavailable. Laboratory tests on synthetic hydrate bearing sediments have shown that factors such as formation technique, sediment type and use of hydrate former affects the form and structure of hydrate in the pore space and how it interacts with the sediment. The aim of this research was therefore to create methane hydrate in sediments under a variety of conditions, so that the influence of hydrate morphology could be investigated. A number of experiments were conducted using two distinct formation techniques. The first technique formed methane hydrate from the free gas phase in almost fully water saturated conditions. Five sand specimens, with a range of hydrate contents from 10% to 40% were formed and tested in the gas hydrate resonant column (GHRC). Results from these tests were compared with previous results from tests where methane hydrate had been formed from free gas in partially saturated conditions. It was found that formation method had a significant influence on the properties of the hydrate bearing sand, and therefore the morphology of the hydrate in the pore space. The second set of experiments formed methane hydrate from free gas within partially saturated sediments, but where the sediments were made up of coarse granular materials with a variety of particle size and shape. As it had been established that hydrate acts as a cement when formed under partially saturated conditions, the experiments aimed to observe the effect of particle size and shape on hydrate bonding mechanisms. The results showed that the influence of disseminated hydrate on the physical properties of the specimens was affected by both mean particle size and by particle shape, with the surface area of the sediment grains influencing the volume and distribution of hydrate throughout a material and therefore it’s bonding capabilities. In addition to the experiments on synthetic hydrate specimens, five core sections containing naturally occurring gas hydrate in fine grained sedimentsweremade available to the University of Southampton from the Indian National Gas Hydrate Program (NGHP) 01 expedition. High resolution CT imaging of the core sections observed large volumes of methane hydrate as a network of veins throughout the specimens. Due to sample disturbance caused during the depressurisation and subsequent freezing of the samples prior to delivery, dynamic testing in the gas hydrate resonant column apparatus was not feasible. Therefore, the hydrate was dissociated and a number of geotechnical tests were undertaken on the remaining host sediment. Results from these tests suggested that hydrate dissociation could affect host sediment properties, due to a change in water content, salinity and structure.
32

Hybrid membrane-distillation separation for ethylene cracking

Etoumi, Assma S. Abdalla January 2014 (has links)
Gas separations are often required in chemical processes, e.g. air separation, ethylene production, etc. These are often challenging and costly processes because of the low temperature and high pressure needed if vapour-liquid phase separations are involved. This thesis focuses on hybrid membrane-distillation separations as an opportunity to develop more energy-efficient separation processes. In a typical ethylene plant, recovery, the separation and purification of the cracked product are economically important. The focus of this thesis is on the ‘C2splitter’ which separates the desired product, ethylene, from ethane. Cryogenic distillation, which is currently used to separate the binary ethylene-ethane mixture, is extremely expensive in terms of both capital and operating costs, especially because of refrigerated cooling requirements. Hybrid membrane-distillation processes are able to effectively separate low-boiling compounds and close-boiling mixtures and to reduce energy consumption, relative to cryogenic distillation. However, hybrid membrane-distillation processes present challenges for process modelling, design and operation. There are two major challenges associated with the modelling of hybrid processes for low temperature separations: i) the complex interaction between the process and the refrigeration system and ii) the large number of structural options, e.g. conventional column, membrane unit or hybrid membrane-distillation separation, where the distillation column can be integrated with the membrane unit to form a sequential, parallel, ‘top’or ‘bottom’ hybrid scheme. This thesis develops a systematic methodology to design, screen, evaluate and optimise various design alternatives. Schemes are evaluated with respect to energy consumption, i.e. power consumption of process and refrigeration compressors, or energy costs. In the methodology, process options are screened first for feasibility, based on numerous simulations and sensitivity analyses. Then, the feasible options are evaluated in terms of energy consumption and compared to the performance of a conventional distillation column. Finally, economically viable schemes are optimised to identify the most cost-effective heat-integrated structure and operating conditions. The methodology applies models for multi-feed and multi-product distillation columns, the membrane, compressor and refrigeration system; heat recovery opportunities are systematically captured and exploited. For the separation of relatively ideal mixtures, modified shortcut design methods, based on the Fenske-Underwood-Gilliland method are appropriate because they allow fast evaluation without needing detailed specification of column design parameters (i.e. number of stages, feed and side draw stage locations and reflux ratio). The modifications proposed by Suphanit (1999) for simple column design are extended to consider multi-feed and/or multi-product columns. The complex column designs based on the approximate calculations method are validated by comparison with more rigorous simulations using Aspen HYSYS. To design the hybrid system, a reliable and robust membrane model is also needed. To predict the performance of the module model, this work applies and modifies detailed membrane model (Shindo et al., 1985) and approximate method (Naylor and Backer, 1955) to avoid the need for initial estimates of permeate purities and to facilitate convergence. Heat integration opportunities are considered to reduce the energy consumption of the system, considering interactions within the separation process and with the refrigeration system. A matrix-based approach (Farrokhpanah, 2009) is modified to assess opportunities for heat integration. The modified heat recovery model eliminates the need to design the refrigeration cycle and uses a new simple, linear model that correlates the ideal (Carnot) and a more accurately predicted coefficient of performance. This work develops a framework for optimising important degrees of freedom in the hybrid separation system, e.g. permeate pressure, stage cut, side draw molar flow rate and purity, column feed and side draw locations. Heat recovery options between: i) column feeds and products; ii) the membrane feed and products and iii) the associated refrigeration system are considered. A deterministic and a stochastic optimisation algorithm are applied and compared for their efficiency of solving the resulting nonlinear optimisation problem. The new approach is demonstrated for the design and optimisation of heat-integrated sequential and parallel hybrid membrane-distillation flowsheets. Case study results show that hybrid scheme can reduce energy cost by 11%, compared to distillation, and that parallel schemes have around 8% lower energy costs than sequential hybrid schemes. These results suggest hybrid membrane-distillation processes may be competitive with distillation when applied for ethylene-ethane separations, but that further development of suitable membranes may still be needed.
33

Statistical optimisation of medium constituent variables for biogas production from N-acetylglucosamine by Clostridium beijerinckii and Clostridium paraputrificum

Owoh, Barnabas Chinyere January 2014 (has links)
Statistically based experimental designs were applied to optimise medium constituent for biogas production utilizing N-­‐acetylglucosamine as a carbon source for Clostridium beijerinckii and Clostridium paraputrificum. The important medium constituents influencing total biogas produced, identified by the Plackett and Burman method, were FeSO4.7H2O and initial pH for C. beijerinckii cultures whilst for C. paraputrificum cultures N-­‐acetylglucosamine, L-­‐ cysteine.HCl.H2O and MgCl2. A one factor L-­‐cysteine.HCl.H2O optimization design was applied to investigate the ideal concentration of L-­‐cysteine.HCl.H2O required to achieve an anaerobic environment for optimum C. beijerinckii total biogas production. The Method of Steepest Ascent was then employed to locate the optimal area of the significant medium variables. Using the Box-­‐behnken method, experimental results showed that there were significant linear effects of independent variables, N-­‐acetylglucosamine for C. beijerinckii cultures and for C. paraputrificum cultures N-­‐acetylglucosamine, L-­‐cysteine.HCl.H2O and MgCl2 on total biogas volume. Significant curvature or quadratic effects of N-­‐ acetylglucosamine and L-­‐cysteine.HCl.H2O were identified for C. paraputrificum cultures. There were no significant interaction effects between medium constituent variables on resulting biogas volume. The optimal conditions for the maximum volume of biogas produced for C. beijerinckii cultures were 21 g/l of N-­‐ acetylglucosamine, 0.1 g/l of FeSO4.7H2O and initial pH of 6.11 and for C. paraputrificum were 29 g/l of N-­‐acetylglucosamine, 0.27 g/l of L-­‐ cysteine.HCl.H2O and 0.4 g/l of MgCl2. Using this statistical optimization strategy, the total biogas volume from N-­‐acetylglucosamine utilization increased from 150 ml/l to 6533 ml /l in the C. beijerinckii cultures and 100 ml/l to 5350 ml/l in the C. paraputificum cultures. The maximum yield of bio-­‐hydrogen by C. paraputrificum from N-­‐acetylglucosamine was 2.55 mol of H2 / mol of N-­‐ acetylglucosamine and by C. beijerinckii was 2.43 mol of H2 / mol of N-­‐ acetylglucosamine.
34

Etude du captage du CO2 par la cristallisation des hydrates de gaz : Application au mélange CO2-N2 / CO2 capture by gaz hydrate cristallization : Application on the CO2-N2 mixture

Bouchemoua, Amina 16 July 2012 (has links)
Le captage du CO2 représente un enjeu industriel majeur et scientifique du siècle. Il existe différentes méthodes de séparation et de captage du CO2, telles que, l'absorption aux amines et l’adsorption. Bien que ces processus soient bien développés au niveau industriel, ils sont très consommateurs d’énergie. Le procédé de captage du CO2 par formation d’hydrates de gaz consomme moins d’énergie et semble être très prometteur pour la séparation du CO2 Les hydrates de gaz sont des composés cristallins de la famille des clathrates dans lesquels des molécules d'eau se relient entre elles par des liaisons hydrogène pour former des cavités qui peuvent contenir des molécules de gaz. La formation d'hydrates de gaz est favorisée par une haute pression et basse température.Cette étude est menée dans le cadre du projet ANR SECOHYA. L'objectif est d'étudier les conditions thermodynamiques et cinétiques du procédé de captage du CO2 par cristallisation d'hydrates de gaz.Premièrement, nous avons développé un dispositif expérimental pour réaliser des expériences afin de déterminer les conditions thermodynamiques et cinétiques de formation des hydrates mixtes CO2-N2 dans l'eau comme phase liquide. Nous avons montré que la pression opératoire peut être très élevée et la température très basse. Pour la faisabilité du projet, nous avons utilisé le TBAB (TétraButylAmmonium Bromure) en tant qu'additif thermodynamique dans la phase liquide. L'utilisation du TBAB peut réduire considérablement la pression opératoire.Dans la deuxième partie de cette étude, nous avons présenté un modèle thermodynamique, basé sur le modèle de van der Waals et Platteeuw. Ce modèle permet de prédire les conditions d'équilibre thermodynamique de formation des hydrates de gaz. Des données expérimentales d'équilibre de mélanges CO2-CH4 et de CO2-N2 sont présentées et comparées à des résultats théoriques. / CO2 capture and sequestration represent a major industrial and scientific challenge of thiscentury. There are different methods of CO2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are welldeveloped at industrial level, they are energy intensive. Hydrate formation method is a lessenergy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO2-N2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (TetraButylAmmonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure.In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO2-CH4 and CO2-N2 mixtures are presented and compared to theoretical results.
35

Captage du dioxyde de carbone par cristallisation de clathrate hydrate en présence de cyclopentane : Etude thermodynamique et cinétique / Carbon dioxide capture by clathrate hydrate crystallization in presence of cyclopentane : Kinetics and thermodynamics study.

Galfré, Aurélie 14 February 2014 (has links)
Le CO2 est capté par formation de clathrates hydrates sous l’action d’un promoteur de cristallisation thermodynamique. Les clathrates hydrates sont des composés d’inclusion non stœchiométriques formés de molécules d’eau organisées en réseau de cavités piégeant des molécules de gaz. Ce procédé de captage consiste à piéger de façon sélective le dioxyde de carbone dans les cavités des clathrates hydrates et à le séparer ainsi des autres gaz. Les hydrates mixtes de cyclopentane (CP) + gaz ont été étudiés dans le cadre du projet FUI ACACIA et du projet européen ICAP. Les premières expériences se sont focalisées sur l’étude des équilibres quadri phasiques (gaz CO2/N2, eau liquide, cyclopentane liquide et hydrate). Le cyclopentane est un promoteur thermodynamique qui forme des hydrates mixtes de CO2 + N2 + CP à basse pression et température modérée. La pression d’équilibre des hydrates mixtes est réduite jusqu’à 97% par rapport à la pression d'équilibre initiale des hydrates de gaz. La sélectivité de captage du CO2 dans les hydrates mixtes est augmentée et le volume de gaz stocké est de 40 m3gaz/m3hydrate. Une seconde étude expérimentale, conduite en présence d’une sonde FBRM (Focused Beam Reflectance Measurements) et d’une émulsion stable directe de CP/eau, a montré que la cinétique de cristallisation des hydrates mixtes de CP + CO2 est limitée par la diffusion du gaz à l’interface gaz/liquide. La sonde FBRM permet de détecter parfaitement l’apparition de la nucléation. Le changement de profil de la distribution en longueurs de corde (CLD) est non seulement lié à l’apparition des mécanismes de cristallisation (dont l’agglomération) mais aussi à la disparition des gouttes de CP au profit des hydrates qui cristallisent par un mécanisme à cœur rétrécissant. / CO2 separation and capture by clathrate hydrate crystallization is a non-conventional way of trapping and storing gas molecules from flue gases. Clathrates hydrates are non-stoichiometric ice-like crystalline solids consisting of a combination of water molecules and suitable guest molecules. Mixed hydrates of cyclopentane (CP) + gas have been studied in one national project (FUI ACACIA) and a European program (iCAP). Cyclopentane is an organic additive which forms mixed hydrates of CP + CO2 + N2 at low pressure and moderate temperature. The equilibrium pressure is decreasing up to 97 % (relative to the equilibrium pressure without cyclopentane). CO2 selectivity in hydrates is enhanced and gas storage capacity approaches a roughly constant value of 40 m3gas (STP) /m3hydrate. Crystallization of CP + CO2 mixed hydrates seems limited by gas diffusion through the gas / liquid interface, which gets in the way of the determination of the intrinsic kinetic constants of crystallization. Experimental studies have also been investigated in presence of a Focused Beam Reflectance Measurements (FBRM) probe in stable emulsion of CP in water. FBRM probe can successfully identify hydrate nucleation. The sharp change in the mean chord length and the spread of Chord Length Distribution (CLD) are related to the progressive disappearance of the CP droplets in favor of the CP + CO2 mixed hydrates formation. The change in the mean chord length distribution is not only related to the agglomeration phenomenon of the particles but also to the occurrence of the shrinking core crystallization of the CP droplets.
36

Experimental study and modeling of methane hydrates cristallization under flow from emulsions with variable fraction of water and anti-agglomerant / Étude expérimentale et modélisation de la cristallisation d'hydrates de méthane en écoulement à partir d'une émulsion à pourcentages variables d'eau et d’anti-agglomérant

Mendes Melchuna, Aline 04 January 2016 (has links)
La cristallisation des hydrates pendant la production de pétrole est une source de risques, surtout liés au bouchage des lignes de production dû à l’agglomération des hydrates. Pendant l'extraction de pétrole, l'huile et l'eau circulent dans le pipeline et forment une émulsion instable. La phase eau se combine avec les composants d'hydrocarbures légers et peut former des hydrates. La cristallisation des hydrates a été intensivement étudiée, principalement à faible fraction d’eau. Cependant, lorsque le champ de pétrole devient mature, la fraction d’eau augmente et peut devenir la phase dominante, un système peu étudié concernant à la formation d'hydrates. Plusieurs techniques peuvent être combinées pour éviter ou remédier la formation d'hydrates. Récemment, une nouvelle classe d'additifs a commencé à être étudiée : Inhibiteurs d'Hydrates à Bas Dosage (LDHI), divisés en Inhibiteurs Cinétiques (KHI-LDHI) et anti-agglomérants (AA-LDHI).Ce travail est une étude paramétrique de la formation d'hydrates à partir de l'émulsion, en variant la fraction d’eau, le débit, en absence et en présence d’AA-LDHI. Les expériences ont été réalisées sur la boucle d'écoulement Archimède, qui est en mesure de reproduire les conditions de la mer profonde. L'objectif de cette étude est d'améliorer la compréhension de la formation d'hydrate et de comprendre comment l'additif dispersant évite l'agglomération. Pour ce faire, un modèle comportemental de la cristallisation pour les systèmes sans et avec additif a été développé. Il a également été proposé une technique pour déterminer la phase continue du système et un mécanisme d'action pour l'anti-agglomérant a été suggéré. / Crystallization of hydrates during oil production is a major source of hazards, mainly related to flow lines plugging after hydrate agglomeration. During the petroleum extraction, oil and water circulate in the flow line, forming an unstable emulsion. The water phase in combination with light hydrocarbon components can form hydrates. The crystallization of hydrates has been extensively studied, mainly at low water content systems. However, as the oil field matures, the water fraction increases and can become the dominant phase, a system less known in what concerns hydrate formation. Actually, several techniques can be combined to avoid or remediate hydrate formation. Recently, a new class of additives called Low Dosage Hydrate Inhibitor (LDHI) started to be studied, they are classified as Kinetic Hydrate Inhibitors (KHI-LDHI) and Anti-Agglomerants (AA-LDHI).This work is a parametric study about hydrate formation from emulsion systems ranging from low to high water content, where different flow rates and the anti-agglomerant presence were investigated. The experiments were performed at the Archimède flow loop, which is able to reproduce deep sea conditions. The goal of this study is enhancing the knowledge in hydrate formation and comprehending how the dispersant additive acts to avoid agglomeration. For this matter, it was developed a crystallization topological model for the systems without and with additive. A technique to determine the system continuous phase and a mechanism of the anti-agglomerant action from the chord length measurements were also proposed.
37

Downhole Gasification (DHG) for improved oil recovery

Sánchez Monsalve, Diego Alejandro January 2014 (has links)
Gas injection, the fastest growing tertiary oil recovery technique, holds the promise of significant recoveries from those depleted oil reservoirs around the world which fall into a pressure range of (50-200) bar mainly. However, its application with the usual techniques is restricted by the need for various surface facilities such as enormous gas supply and storage. The only surface facility that downhole gasification of hydrocarbons (DHG) requires, on the other hand, is a portable electricity generator. DHG consists in producing inert gases, H2, CO, CO2 and CH4 through the steam reforming reaction of a part of the produced oil in a gasifier-reformer reactor positioned alongside the producer well in the reservoir. The gases, mainly H2 -the most effective displacing gas among produced gases- are injected into a gas cap above the oil formation, to increase oil recovery through a gas displacement drive mechanism. So far, DHG has only been tested under laboratory conditions using methane, pentane/reservoir gas and naphtha/reservoir gas as feedstock at conditions of reservoir pressure up to 130 bar. The studies varied reaction temperature, steam to carbon (S/C) ratio, catalyst types and catalyst loading in the gasifier-reformer reactor of a small pilot scale rig. These experimental studies demonstrated that pressure is one of the main factors influencing the effectiveness of the DHG process. From this starting point, the present investigation was directed at extending the pressure range up to 160 bar in the gasifier-reformer reactor using a naphtha fraction as feedstock in order to investigate whether the conversion and H2 concentration in produced dry gas can be maintained at acceptable levels under conditions of high pressure. To this end, experimental studies were carried out within the laboratory using the existing DHG rig on the small pilot scale, which was successfully commissioned and revamped for the purposes of this study. Initially, the investigation focused on exploring operating conditions, namely, steam to carbon (S/C) ratio, length of the gasifier-reformer reactor tube/ catalyst loading and the relative performance of two different catalysts. Subsequently, experiments on shutdown/start up cycles followed by variation of temperature were performed to simulate the effect of sudden electrical disruptions that usually occur in field operations. Experimental results using naphtha at pressure from 80 to 160 bar at 650 ºC, S/C= 6 achieved total feedstock conversion, no coke deposits and, most importantly, high H2 concentration in the produced dry gas (56-63 vol. % plus other gases). The best result was obtained with a crushed HiFUEL R110 catalyst (40-60 wt. % of NiO/CaO.Al2O3) and a reactor tube length of 72 cm, but the results with a C11-PR catalyst (40 wt. % of NiO/MgO.Al2O3) and a reactor tube length of 30 cm were similarly favourable. These results were supported by results of a numerical DHG model which indicated total feedstock conversion and values of H2 around 67 vol. % (using n-heptane as model surrogate). The results suggest that the DHG process is technically feasible at the pressure values studied, perhaps up to 200 bar where there are many hundreds of depleted, light oil reservoirs, especially in North America and other parts of the world below that pressure value.
38

Experimental study and modeling of methane hydrates cristallization under flow from emulsions with variable fraction of water and anti-agglomerant / Étude expérimentale et modélisation de la cristallisation d'hydrates de méthane en écoulement à partir d'une émulsion à pourcentages variables d'eau et d’anti-agglomérant

Mendes Melchuna, Aline 04 January 2016 (has links)
La cristallisation des hydrates pendant la production de pétrole est une source de risques, surtout liés au bouchage des lignes de production dû à l’agglomération des hydrates. Pendant l'extraction de pétrole, l'huile et l'eau circulent dans le pipeline et forment une émulsion instable. La phase eau se combine avec les composants d'hydrocarbures légers et peut former des hydrates. La cristallisation des hydrates a été intensivement étudiée, principalement à faible fraction d’eau. Cependant, lorsque le champ de pétrole devient mature, la fraction d’eau augmente et peut devenir la phase dominante, un système peu étudié concernant à la formation d'hydrates. Plusieurs techniques peuvent être combinées pour éviter ou remédier la formation d'hydrates. Récemment, une nouvelle classe d'additifs a commencé à être étudiée : Inhibiteurs d'Hydrates à Bas Dosage (LDHI), divisés en Inhibiteurs Cinétiques (KHI-LDHI) et anti-agglomérants (AA-LDHI).Ce travail est une étude paramétrique de la formation d'hydrates à partir de l'émulsion, en variant la fraction d’eau, le débit, en absence et en présence d’AA-LDHI. Les expériences ont été réalisées sur la boucle d'écoulement Archimède, qui est en mesure de reproduire les conditions de la mer profonde. L'objectif de cette étude est d'améliorer la compréhension de la formation d'hydrate et de comprendre comment l'additif dispersant évite l'agglomération. Pour ce faire, un modèle comportemental de la cristallisation pour les systèmes sans et avec additif a été développé. Il a également été proposé une technique pour déterminer la phase continue du système et un mécanisme d'action pour l'anti-agglomérant a été suggéré. / Crystallization of hydrates during oil production is a major source of hazards, mainly related to flow lines plugging after hydrate agglomeration. During the petroleum extraction, oil and water circulate in the flow line, forming an unstable emulsion. The water phase in combination with light hydrocarbon components can form hydrates. The crystallization of hydrates has been extensively studied, mainly at low water content systems. However, as the oil field matures, the water fraction increases and can become the dominant phase, a system less known in what concerns hydrate formation. Actually, several techniques can be combined to avoid or remediate hydrate formation. Recently, a new class of additives called Low Dosage Hydrate Inhibitor (LDHI) started to be studied, they are classified as Kinetic Hydrate Inhibitors (KHI-LDHI) and Anti-Agglomerants (AA-LDHI).This work is a parametric study about hydrate formation from emulsion systems ranging from low to high water content, where different flow rates and the anti-agglomerant presence were investigated. The experiments were performed at the Archimède flow loop, which is able to reproduce deep sea conditions. The goal of this study is enhancing the knowledge in hydrate formation and comprehending how the dispersant additive acts to avoid agglomeration. For this matter, it was developed a crystallization topological model for the systems without and with additive. A technique to determine the system continuous phase and a mechanism of the anti-agglomerant action from the chord length measurements were also proposed.
39

Experimental study and modeling of methane hydrates cristallization under flow from emulsions with variable fraction of water and anti-agglomerant / Étude expérimentale et modélisation de la cristallisation d'hydrates de méthane en écoulement à partir d'une émulsion à pourcentages variables d'eau et d’anti-agglomérant

Mendes Melchuna, Aline 04 January 2016 (has links)
La cristallisation des hydrates pendant la production de pétrole est une source de risques, surtout liés au bouchage des lignes de production dû à l’agglomération des hydrates. Pendant l'extraction de pétrole, l'huile et l'eau circulent dans le pipeline et forment une émulsion instable. La phase eau se combine avec les composants d'hydrocarbures légers et peut former des hydrates. La cristallisation des hydrates a été intensivement étudiée, principalement à faible fraction d’eau. Cependant, lorsque le champ de pétrole devient mature, la fraction d’eau augmente et peut devenir la phase dominante, un système peu étudié concernant à la formation d'hydrates. Plusieurs techniques peuvent être combinées pour éviter ou remédier la formation d'hydrates. Récemment, une nouvelle classe d'additifs a commencé à être étudiée : Inhibiteurs d'Hydrates à Bas Dosage (LDHI), divisés en Inhibiteurs Cinétiques (KHI-LDHI) et anti-agglomérants (AA-LDHI).Ce travail est une étude paramétrique de la formation d'hydrates à partir de l'émulsion, en variant la fraction d’eau, le débit, en absence et en présence d’AA-LDHI. Les expériences ont été réalisées sur la boucle d'écoulement Archimède, qui est en mesure de reproduire les conditions de la mer profonde. L'objectif de cette étude est d'améliorer la compréhension de la formation d'hydrate et de comprendre comment l'additif dispersant évite l'agglomération. Pour ce faire, un modèle comportemental de la cristallisation pour les systèmes sans et avec additif a été développé. Il a également été proposé une technique pour déterminer la phase continue du système et un mécanisme d'action pour l'anti-agglomérant a été suggéré. / Crystallization of hydrates during oil production is a major source of hazards, mainly related to flow lines plugging after hydrate agglomeration. During the petroleum extraction, oil and water circulate in the flow line, forming an unstable emulsion. The water phase in combination with light hydrocarbon components can form hydrates. The crystallization of hydrates has been extensively studied, mainly at low water content systems. However, as the oil field matures, the water fraction increases and can become the dominant phase, a system less known in what concerns hydrate formation. Actually, several techniques can be combined to avoid or remediate hydrate formation. Recently, a new class of additives called Low Dosage Hydrate Inhibitor (LDHI) started to be studied, they are classified as Kinetic Hydrate Inhibitors (KHI-LDHI) and Anti-Agglomerants (AA-LDHI).This work is a parametric study about hydrate formation from emulsion systems ranging from low to high water content, where different flow rates and the anti-agglomerant presence were investigated. The experiments were performed at the Archimède flow loop, which is able to reproduce deep sea conditions. The goal of this study is enhancing the knowledge in hydrate formation and comprehending how the dispersant additive acts to avoid agglomeration. For this matter, it was developed a crystallization topological model for the systems without and with additive. A technique to determine the system continuous phase and a mechanism of the anti-agglomerant action from the chord length measurements were also proposed.
40

Aspects thermodynamiques du captage des gaz acides à partir du gaz naturel / Thermodynamic aspects of the capture of acid gas from natural gas

Wang, Tianyuan 07 December 2017 (has links)
Parmi les combustibles fossiles, le gaz naturel est le plus propre, en termes d'émissions de CO2, d'efficacité énergétique et de quantité de polluants atmosphériques émis. Le méthane est l'élément principal du gaz naturel; néanmoins, il contient des quantités considérables de gaz acides (CO2, H2S) qui peuvent entraîner la corrosion des équipements et des pipelines si de l'eau est présente. Les mercaptans sont d’autres composés soufrés présents dans le gaz naturel dont combustion peut produire du SO2 qui est un produit chimique indésirables causant des problèmes environnementaux. Les gaz acides et les mercaptans doivent être retirés du gaz naturel jusqu'à une norme acceptable. Le gaz naturel traité contient jusqu'à 2% de CO2, 2-4 ppm de H2S et 5-30 ppm de mercaptans. L'absorption chimique avec des solvants aqueuses comportant des alcanolamines [3] (comme la monoéthanolamine (MEA), la diéthanolamine (DEA), la méthyldiéthanolamine (MDEA)) est la méthode la plus bien malteuse pour séparer les gaz acides du gaz naturel. Les gaz acides réagissent selon une réaction acide base dans l'absorbeur pour former des espèces électrolytes. Les mercaptans et les hydrocarbures ne réagissent pas avec les molécules d'alcanolamines, et sont physiquement absorbés.Le modèle thermodynamique a une grande importance pour la conception du procédé de traitement des gaz acide, car il va permettre de déterminer l'Equilibre Liquide Vapeur et faire les bilans d’énergie. Des modèles thermodynamiques fiables peuvent permettre aux concepteurs non seulement de confirmer leurs limites réglementaires, mais aussi de minimiser la perte de composants précieux comme les hydrocarbures.Dans ce travail, un modèle thermodynamique a été développé pour prédire:•Les solubilités des alcanes (méthane, éthane, propane, n-butane, n-pentane, n-hexane), aromatiques (ethylbenzène, benzène, toluène) et mercaptans (MM, EM) dans une solution aqueuse d'alcanolamine• Les solubilités des gaz acides (CO2, H2S) dans des solutions aqueuses d'alcanolamine et d'autres propriétés cruciales telles que: la concentration d'électrolyte, la composition en phase vapeur (principalement le conteneur d'eau)• Les diagrammes de phase pour les systèmes multi-composants contenant du CO2-H2S-alcanolamine-eau-hydrocabon-mercaptan.Les paramètres du model ont été déterminés avec les données expérimentales disponibles dans la littérature et les nouvelles données mesurées. / Among fossil fuels, natural gas is the cleanest, in terms of CO2 emission, burn efficiency and amount of air pollutant. Methane is the prevailing element of natural gas; therefore, there are also a variety of impurities. In fact, it contains usually considerable amounts of acid gases (CO2, H2S) which can lead to corrosion in equipments and pipelines if water is present. Mercaptans are known as toxic molecules with undesirable odor, and fuel combustion of mercaptan molecules can produce SO2 which is undesirable chemical, they can cause environmental issues. Acid gases and mercaptans are needed to be removed from natural gas until acceptable standard. The treated natural gas contains as maximum as 2% of CO2, 2–4 ppm of H2S and 5–30 ppm of total mercaptans. Chemical absorption with alkanolamines [3] (such as monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA)) is the most well-established method to separate acid gas from natural gas. Acid gases react with alkanolamines in the absorber to form electrolyte species, mercaptans and hydrocarbons do not react with alkanolamines molecules, and they are physically absorbed by aqueous alkanolamine solution. Then the loaded solution can be regenerated by heating in the stripper.Thermodynamic model is of high importance for the conception of the process, as it is linked directly to the accurate determination of the Vapor-Liquid Equilibrium and energy balances. Reliable thermodynamic models can allow designers not only to confirm their regulatory limits, but also to minimize the loss of valuable hydrocarbons components.In this work a thermodynamic model has been developed to describe:• Alkane (methane, ethane, propane, n-butane, n-pentane, n-hexane), aromatic (ethylbenzene, benzene, toluene) and mercaptans (MM,EM) in aqueous alkanolamine solution• Acid gases (CO2,H2S) solubilities in aqueous alkanolamine solutions, and other crucial properties like: electrolyte concentration, vapor phase composition(mostly water contant)• The phase diagram for multi-component system containing CO2-H2S-alkanolamine-water-hydrocabon-mercaptan.The parameters of the model were determined with the experimental data available in the literature and the new measured data.

Page generated in 0.0316 seconds