• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 77
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Experimental and theoretical investigations of nanosecond fibre laser micromachining

Williams, Eleri January 2014 (has links)
Pulsed ytterbium-doped fibre lasers based on a master oscillator power amplifier (MOPA) architecture possess attractive characteristics over their Q-switched diode-pumped solid-state counterparts. These include a relatively low cost of ownership and a flexible operating window with respect to the pulse duration, shape and repetition rate. For micro machining applications, given this inherent large processing window available with respect to the pulse characteristics, the effect of process parameters on particular machining outcomes needs to be investigated. The literature review conducted identified four important gaps in the knowledge surrounding the nanosecond fibre laser machining of materials. These gaps included the optimisation of the nanosecond fibre laser machining during milling operations, with the aim of obtaining both high surface quality and material removal rates, as well as the need for complimentary theoretical and experimental studies on the basic nanosecond laser material interaction for a wide range of engineering materials. In addition, the characterisation of the nanosecond laser machining of bulk metallic glasses, and the investigation of processing conditions leading to crystallisation of their amorphous structure, were identified as knowledge gaps that need to be addressed. The first knowledge gap was the focus of Chapter 3. The particular parameters under investigation in this study were the pulse duration and repetition frequency, the pulse overlap, the scanning strategy and the distance between linear machined tracks when processing aluminium. The results showed that, for each of the pulse durations studied, the specific frequency at which both the highest energy and average power are delivered leads to the maximum material removal rate (MRR) achievable, and to high values of surface roughness. It was also observed that the lowest surface roughness obtained corresponds to a specific frequency range which is common for all pulse durations. Following this, a design of experiments was conducted for a given pulse duration with the aim of identifying an optimum combination of parameters with respect to the attained surface roughness while operating at the frequency resulting in the highest MRR. This optimisation study resulted in a 60% decrease in the achieved surface roughness and also showed that the distance between machined tracks had the highest influence on the surface finish among the parameters considered. In the following chapter, a theoretical model was developed to predict the topographical evolution of the single pulse craters as a result of the time-dependent temperature rise in the processed materials when the laser beam is incident on its surface. In addition to this theoretical study, in an to attempt to understand the laser material interaction on a more fundamental level, single pulse experiments were conducted at varying laser fluence values and pulse durations leading to the formation of single craters on the surface of a number of materials namely, titanium, silicon and silicon carbide. In particular, different pulse lengths were investigated at decreasing values of fluence until no visible effect on the material surface could be observed. Based on this investigation, the fluence corresponding to the ablation threshold for each material at different pulse durations could be found whilst identifying the relationship between the laser processing parameters and the dimensions of the single craters. Scanning Electron Microscopy (SEM) micrographs of the craters were also used to observe phenomena such as melt ejection as a result of varying the process parameters. The experimental results were compared with the theoretical predictions and a good agreement between both set of data was found with respect to the achieved depths and diameters of the craters. The additional knowledge gaps were the focus of Chapter 5. In particular, the characterisation of nanosecond laser machining of a zirconium-based bulk metallic glass (BMG) was conducted using the approach employed in Chapter 4. Similar conclusions were reached with regard to the single pulse material removal behaviour when varying the fluence and pulse duration. In addition, milling of the material with different parametric combinations was implemented to investigate the crystallisation behaviour of the BMG. To complement these experimental tests, the theoretical model reported in Chapter 4 was further developed to predict the heating and cooling rates of the milling process. From this study, it was found that varying the process parameters of the machining of BMG results in a variation in the critical cooling rate (from the melt temperature to the glass transition temperature) which may result in crystallisation of the material.
62

Brominated micropollutants within the integrated steel-making process and their fate in the Environment

Drage, Daniel January 2013 (has links)
PBDEs were found in the raw sinter mix (RSM) used in iron ore sintering. Mass balance calculations after measurement of output samples (ESP dust, sinter product and stack emissions) revealed net reduction of PBDEs during sintering. After PBDD/Fs were detected in stack emissions, PBDEs and PBDD/Fs were investigated using a sinter pot (SP) - a laboratory scale version of the sintering process - under various conditions. Results suggested de novo synthesis of PBDD/Fs occurs within the process, but this was not caused by the PBDE content of RSM. The results from the SP ruled out PBDE formation within the sintering process. Measurement of PBDEs in UK air and soil demonstrated that whilst PBDEs appeared to have decreased since legislative use restrictions, their persistence is highlighted by their continued detection. PBDEs decreased in air and soil with distance from Birmingham City Centre, highlighting the higher density of PBDE sources in urban areas. Australian soils were less contaminated with PBDEs than the UK. Similar spatial patterns were found in both countries, with industry and urbanisation causing increased likelihood of elevated ∑PBDE concentrations primarily from Penta-BDE. Agricultural soil showed an influence of OctaBDE congeners. Sediment cores from Port Jackson, Australia demonstrated that PBDEs were still rising at the end of the 20th Century. Industry was highlighted as a source as cores from the industrialised western side of the harbour were more contaminated than that from the urban north-east.
63

Development of an electrochemical micromachining (μECM) machine

Spieser, Alexandre Frederic Jean January 2015 (has links)
Electrochemical machining (ECM) and especially electrochemical micromachining (μECM) became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications such as microfluidics systems and stressfree drilled holes in the automotive and aerospace sectors. Electrochemical machining is considered as a non-conventional machining process based on the phenomenon of electrolysis. This process requires maintaining a small gap - the interelectrode gap (IEG) - between the anode (workpiece) and the cathode (tool-electrode) in order to achieve acceptable machining results (i.e. accuracy, high aspect ratio with appropriate material removal rate and efficiency). This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has 3 axes of motion (X, Y and Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2nmresolution encoders for ultra-precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. A pulse power supply unit (PSU) and a special control algorithm have been implemented. The pulse power supply provides not only ultra-short pulses (50ns), but also plus and minus biases as well as a polarity switching functionality. It fulfils the requirements of tool preparation with reversed ECM on the machine. Moreover, the PSU is equipped with an ultrafast over current protection which prevents the tool-electrode from being damaged in case of short-circuits. Two different process control algorithms were made: one is fuzzy logic based and the other is adapting the feed rate according to the position and time at which short-circuits were detected. The developed machine is capable of drilling micro holes in hard-to-machine materials but also machine micro-styli and micro-needles for the metrology (micro CMM) and medical sectors. This work also presents drilling trials performed with the machine with an orbiting tool. Machining experiments were also carried out using electrolytes made of a combination of HCl and NaNO₃ aqueous solutions. The developed machine was used to fabricate micro tools out of 170μm WC-Co alloy shafts via micro electrochemical turning and drill deep holes via μECM in disks made of 18NiCr6 alloy. Results suggest that this process can be used for industrial applications for hard-to-machine materials. The author also suggests that the developed machine can be used to manufacture micro-probes and micro-tools for metrology and micro-manufacturing purposes.
64

CNC milling toolpath generation using genetic algorithms

Essink, Wesley January 2017 (has links)
The prevalence of digital manufacturing in creating increasingly complex products with small batch sizes, requires effective methods for production process planning. Toolpath generation is one of the challenges for manufacturing technologies that function based on the controlled movement of an end effector against a workpiece. The current approaches for determining suitable tool paths are highly dependent on machine structure, manufacturing technology and product geometry. This dependence can be very expensive in a volatile production environment where the products and the resources change quickly. In this research, a novel approach for the flexible generation of toolpaths using a mathematical formulation of the desired objective is proposed. The approach, based on optimisation techniques, is developed by discretising the product space into a number of grid points and determining the optimal sequence of the tool tip visiting these points. To demonstrate the effectiveness of the approach, the context of milling machining has been chosen and a genetic algorithm has been developed to solve the optimisation problem. The results show that with meta-heuristic methods, flexible tool paths can indeed be generated for industrially relevant parts using existing computational power. Future computing platforms, including quantum computers, could extend the applicability of the proposed approach to much more complex domains for instantaneous optimisation of the detailed manufacturing process plan.
65

Vrillage de tôles métalliques ultra-minces après emboutissage / Twisting analysis of ultra-thin metallic sheets after deep-drawing

Pham, Cong Hanh 19 December 2014 (has links)
Le vrillage est un mode de retour élastique particulier, qui se produit suite à la mise en forme par emboutissage de pièces allongées, à savoir dont une des dimensions est grande devant les deux autres. Le vrillage est caractérisé par la torsion de la pièce autour d’un axe parallèle à la plus grande dimension. D’un point de vue expérimental, le vrillage représente un véritable défi, du fait de la grande dimension, de l’ordre du mètre, des pièces industrielles et de la grande dispersion des valeurs caractéristiques de vrillage obtenues pour un même procédé et un même matériau. En conséquence, l’étude du vrillage en utilisant une échelle réduite sur l’ensemble des dimensions outils et pièce est retenue pour ce travail de thèse, avec un intérêt particulier pour l’influence de l’alignement tôle/outils sur l’intensité du vrillage.L’objectif général de ce travail de thèse est l’étude expérimentale et numérique du vrillage de pièces en forme de U, à partir de flans de longueur 100 mm et d’épaisseur 0,15 mm. Une première partie concerne la caractérisation et modélisation du comportement mécanique du matériau, un acier inoxydable. Des essais mécaniques de traction et cisaillement simple ont été réalisés, avec une mesure locale sans contact du champ de déformation. L’écrouissage ainsi que l’évolution de la pente à la décharge ont été caractérisés, et les paramètres d’un modèle élasto-plastique avec écrouissage mixte et dépendance du module d’Young avec la déformation plastique équivalente ont été identifiés à partir de ces essais.Afin de constituer une base expérimentale sur le vrillage, un dispositif spécifique a été conçu et usiné dans le cadre de cette thèse. Des essais d’emboutissage de flans rectangulaires, de dimensions 100 x 28 mm2, pour atteindre une forme de U de profondeur 7 mm, ont été réalisés. L’alignement de l’éprouvette avec le poinçon et la matrice a été particulièrement contrôlé et deux orientations ont été étudiées : l’éprouvette est soit alignée avec le poinçon, soit désalignée de 2° par rapport à son centre. La forme finale des éprouvettes a été mesurée avec un scanner laser. Le vrillage est caractérisé par le rapport de l’angle entre le fond de deux sections extrêmes sur leur distance respective. Un vrillage de 11°.m-1 a été mesuré pour les éprouvettes désalignées, tandis que pour les éprouvettes alignées, aucun vrillage significatif n’a été obtenu. L’étude des sections transversales de l’éprouvette montre une corrélation entre l’asymétrie du retour élastique causée par l’asymétrie de la géométrie de l’éprouvette, dans le cas désaligné, et le vrillage. Le glissement de l’éprouvette sous le poinçon au cours de l’essai affecte également le vrillage quelque soit l’orientation de l’éprouvette.Finalement, la simulation numérique de la mise en forme d’un flan en forme de U a été effectuée avec le code de calcul Abaqus®. Un solveur explicite est utilisé pour l’étape d’emboutissage et un solveur implicite pour le retour élastique. L’influence de la taille de maillage, ainsi que celle de la loi de comportement du matériau ont été étudiées. Les résultats de la simulation numérique sont alors confrontés aux résultats expérimentaux. / Twisting of metallic sheets is one particular mode of springback that occurs after drawing of elongated parts, i.e. with one dimension much larger than the two others. Twisting is usually characterized by the disorientation angle between the two end sections which turn around an axis parallel to the greatest dimension. From experimental point of view, twisting is very challenging because a lot of data were obtained on industrial-type parts, with one dimension of the order of the meter. These data are usually very dispersed and with the same process parameters, material and geometry, very different values for the twisting parameter can be obtained. As a consequence, the study of twisting phenomenon by using a reduced scale for all the dimensions of the tools and blank is retained in this work of. The influence of the blank alignment with the tools on the intensity of the twisting parameter was particular investigated.The objective of the thesis is the experimental and numerical study of the twisting of U-shaped part, obtained from stainless steel blanks with a length of 100 mm and thickness of 0.15 mm. The first part relates to the characterization and modeling of the material mechanical behavior. Conventional tests such as tension and simple shear were performed. The kinematic contribution to the hardening and the evolution of the loading-unloading slope with the plastic deformation were carried out. The parameters of an elastic-plastic model based on a mixed hardening and degradation of Young’s modulus with the equivalent plastic strain have been identified from these tests.In order to establish an experimental database for twisting, a dedicated device for drawing U-shaped elongated parts was designed and manufactured. Deep-drawing of rectangular blanks, of dimensions 100 x 28 mm2, to achieve a U-shape rail of 7 mm of depth was performed. Two different orientations of the part with respect to the tools were chosen: either aligned with the tools, or purposefully misaligned by 2°. The geometry of the part after springback was laser scanned. Twisting is characterized by the disorientation angle in-between the two end sections of the part over the distance. Several samples were drawn for each configuration, leading to the conclusion that almost no twisting occurs in the first case whereas a twisting parameter of 11°.m-1 corresponded to the second one. The analysis of the geometry of cross sections has shown a correlation between twisting and asymmetry of springback, like the opening of the U-shaped rail, caused by the asymmetry of the blank in the misaligned case. The sliding of the blank beneath the punch during the process also affects twisting whatever its orientation. Finally, finite element simulation of the drawing process, for the two configurations of the blank, within the explicit framework for drawing and implicit one for springback, were carried out using Abaqus® software. The influences of the mesh size as well as the material behavior law on the intensity of twisting parameter were studied. Numerical predictions were compared with experiments.
66

Prozessregelungen durch piezoelektrisch erweiterte Umformwerkzeuge

Bäume, Tobias 06 January 2020 (has links)
Um immer strengere Umweltauflagen zu erfüllen, wird zur Gewichtsreduzierung bei Automobilen auf Leichtbau gesetzt. Infolgedessen findet auch beim Herstellen von Karosserieblechteilen ein verstärktes Ausreizen des Werkstoffes statt. Erschwert wird dies durch den Trend zu komplexeren Bauteilgeometrien und markanterer Designsprache. Daher wird der Herstellungsprozess mehr und mehr an den Grenzbereichen der Stabilität betrieben. Piezoelektrische Aktoren (PA) können dabei so eingesetzt werden, dass der Umformprozess um zusätzliche Einflussparameter erweitert wird. Sie beeinflussen dabei die Materialbewegung lokal und können dadurch zu einer Steigerung der Effizienz beitragen. Im Rahmen der Dissertation wurden PA in die Matrize eines Großserien-Umformwerkzeugs (Karosseriebauteil einer Reserveradmulde) implementiert und hinsichtlich der Eignung für die Prozessregelung untersucht. Dabei wurden verschiedene Sensoren berücksichtigt, wobei sich Triangulationslaser zur Messung der Materialbewegung an der Platinenkante am besten eigneten. Es wurde die Wechselwirkung der PA auf die Materialbewegung empirisch und unter Verwendung statistischer Versuchsplanung ermittelt. Ein FE-Modell unterstützte die Prozessbeschreibung. Aus den Versuchsergebnissen wurde mittels Regressionsanalyse ein Polynomialmodell zur weiteren Untersuchung berechnet. Ausgehend von den Erkenntnissen über das Prozessverhalten wurden unter Verwendung der getesteten Sensoren Regelkreise aufgebaut. Zum einen wurde ein iterativer Ansatz untersucht, der nach jedem Umformvorgang die Regelabweichung ermittelt und durch Einsetzen der PA versucht, diese im Folgehub zu minimieren. Es konnte nachgewiesen werden, dass der Prozess auf diese Weise stabilisiert werden kann. Des Weiteren wurde eine In-Prozess-Regelung implementiert, welche die Regelabweichung kontinuierlich über den Prozess minimierte. Als Führungsgröße wurde eine Referenzkurve aus einer Schar von Gutteilen verwendet. Es zeigten sich eine verbesserte Bauteilqualität und ein Ausgleichen von Störgrößen.:Abbildungsverzeichnis Tabellenverzeichnis 1 Einleitung 2 Wissenschaftlicher Erkenntnisstand 2.1 Grundlagen der Blechumformung 2.2 Prozessregelung eines Umformvorgangs 2.3 Messeinrichtungen in Umformprozessen 2.4 Piezoelektrische Aktoren in Umformwerkzeugen 2.5 Diskussion zum wissenschaftlichen Erkenntnisstand 3 Auswahl großserientauglicher Sensorik zum Aufbau der Prozessregelung 3.1 Anforderungen an großserientaugliche Sensorik 3.2 Bewertungsmatrix einer Auswahl großserientauglicher Sensoren 4 Forschungsschwerpunkte und -hypothesen 5 Voruntersuchungen 5.1 Vorstellung des Versuchswerkzeug sowie der -geometrie 5.2 Untersuchung potenzieller Sensoren auf Beobachtbarkeit des Prozesses 5.3 Untersuchung der piezoelektrischen Aktoren 5.3.1 Prozessbeschreibung mit integrierten piezoelektrischen Aktoren 5.3.2 Versuchsaufbau mit integrierten piezoelektrischen Aktoren 5.3.3 Untersuchung der piezoelektrischen Aktoren auf Eignung im Prozess 5.3.4 Untersuchung der piezoelektrischen Aktoren auf Steuerbarkeit des Prozesses 6 Modellbildung 6.1 Versuchsplanung 6.2 Modellarten 6.3 Versuchsergebnisse und Modellvorstellung 6.4 Modellvergleich der Ziehkissenarten auf den Einfluss der PA 7 Prozessregelungsansätze 7.1 Iterative Regelung der Materialbewegung 7.1.1 Aufbau und Grundlagen der iterativen Regelung 7.1.2 Verifikation 1: Konvergenzverhalten bei gesetzten Zielen 7.1.3 Verifikation 2: Prozessregelung bei Prozessgrenzenüberschreitung 7.1.4 Diskussion der iterativen Prozessregelung 7.2 In-Prozess-Regelung der Materialbewegung 7.2.1 Aufbau und Grundlagen der In-Prozess-Regelung 7.2.2 Verifikation der In-Prozess-Regelung anhand empirischer Versuche 7.3 Ergebnisdiskussion und Gegenüberstellung der Regelungsansätze 8 Zusammenfassung und Ausblick Literaturverzeichnis Allgemeine Ergänzungen
67

Electrochemical machining : towards 3D simulation and application on SS316

Gomez Gallegos, Ares Argelia January 2016 (has links)
Electrochemical machining (ECM) is a non-conventional manufacturing process, which uses electrochemical dissolution to shape any conductive metal regardless of its mechanical properties and without leaving behind residual stresses or tool wear. Therefore, ECM can be an alternative for machining difficult-to-cut materials, complex geometries, and materials with improved characteristics, such as strength, heat-resistance or corrosion-resistance. Notwithstanding its great potential as a shaping tool, the ECM process is still not fully characterised and its research is an on-going process. Various phenomena are involved in ECM, e.g. electrodynamics, mass transfer, heat transfer, fluid dynamics and electrochemistry, which occur in parallel and this can lead to a different material dissolution rate at each point of the workpiece surface. This makes difficult an accurate prediction of the final workpiece geometry. This problem was addressed in the first part of the present thesis by developing a simulation model of the ECM process in a two-dimensional (2D) environment. A finite element analysis (FEA) package, COMSOL multiphysics® was used for this purpose due to its capacity to handle the diverse phenomena involved in ECM and couple them into a single solution. Experimental tests were carried out by applying ECM on stainless steel 316 (SS316) samples. This work was done in collaboration with pECM Systems Ltd® from Barnsley, UK. The interest of studying ECM on stainless steels (SS) resides on the fact that the application of ECM on SS typically results in various different surface finishes. The chromium in SS alloys usually induces the formation of a protective oxide film that prevents further corrosion of the alloy, giving the metal the special characteristic of corrosion resistance. This oxide film has low electrical conductivity; hence normal anodic dissolution often cannot proceed without oxide breakdown. Partial breakdown of the oxide film often occurs, which causes pits on the surface or a non-uniform surface finish. Therefore the role of the ECM machining parameters, such as interelectrode gap, voltage, electrolyte flow rate, and electrolyte inlet temperature, on the achievement of a uniform oxide film breakdown was evaluated in this work. Experimental results show that the resulting surface finish is highly influenced by the over-potential and current density, and by the characteristics of the electrolyte, flow rate and conductivity. The complexity of experimentally controlling these parameters emphasised the need for the development of a computational model that allows the simulation of the ECM process in full. The simulation of ECM in a three-dimensional (3D) environment is crucial to understand the behaviour of the ECM process in the real world. In a 3D model, information that was not visible before can be observed and a more detailed realistic solution can be achieved. Hence, in this work a computer aided design (CAD) software was used to construct a 3D geometry, which was imported to COMSOL Multiphysics® to simulate the ECM process, but this time in a 3D environment. This enhanced simulation model includes fluid dynamics, heat transfer, mass transfer, electrodynamics and electrochemistry, and has the novelty that an accurate computational simulation of the ECM process can be carry out a priori the experimental tests and allows the extraction of enough information from the ECM process in order to predict the workpiece final shape and surface finish. Moreover, this simulation model can be applied to diverse materials and electrolytes by modifying the input ECM parameters.
68

The effect of sintering and CMAS on the stability of plasma-sprayed zirconia thermal barrier coatings

Shinozaki, Maya January 2013 (has links)
State of the art thermal barrier coatings (TBCs) for gas turbine applications comprise (7 wt.%) yttria partially stabilized zirconia (7YSZ). 7YSZ offers a range of attractive functional properties – low thermal conductivity, high thermal expansion coefficient and high in-plane strain tolerance. However, as turbine entry temperatures are raised, the performance of 7YSZ coatings will be increasingly affected by sintering and environmental contamination, by calcia-magnesia-alumina-silica (CMAS) deposits. The effect of sintering-induced stiffening on the driving force for spallation of plasma-sprayed (PS) TBCs was investigated. Spallation lifetimes of TBC specimens sprayed onto alumina substrates were measured. A simple fracture mechanics approach was employed in order to deduce a value for the strain energy release rate. The critical strain energy release rate was found to be constant, and if this value had been known beforehand, then the rationale presented here could be used for prediction of coating lifetime. The effect of vermiculite (VM) and volcanic ash (VA) contamination on the sintering-induced spallation lifetime of PS TBCs was also investigated. The presence of both VM and VA was found to accelerate the rise in their Young’s modulus with sintering. Spallation results show that coating lifetime may be significantly reduced, even at relative low addition levels, due to the loss of strain tolerance caused by the penetration of glassy deposits. This result gives a clear insight into the role CMAS plays in destabilizing TBCs. Finally, the adhesion characteristics of ingested volcanic ash were studied using a small jet engine. The effects of engine speed and particle size were investigated. Deposition on turbine surfaces was assessed using a borescope. Deposition mainly occurred on the nozzle guide vane and blade platform. A numerical model was used to predict particle acceleration and heating in flight. It was observed that larger particles are more likely to adhere because they have greater inertia, and thus are more likely to impact surfaces. The temperature of the larger particles at the end of its flight was predicted to be below its softening point. However, since the component surface temperatures are expected to be hotter, adhesion of such particles is probable, by softening/melting straight after impact.
69

High-quality laser machining of alumina ceramics

Yan, Yinzhou January 2012 (has links)
Alumina is one of the most commonly used engineering ceramics for a variety of applications ranging from microelectronics to prosthetics due to its desirable properties. Unfortunately, conventional machining techniques generally lead to fracture, tool failure, low surface integrity, high energy consumption, low material removal rate, and high tool wear during machining due to high hardness and brittleness of the ceramic material. Laser machining offers an alternative for rapid processing of brittle and hard engineering ceramics. However, the material properties, especially the high thermal expansion coefficient and low thermal conductivity, may cause ceramic fracture due to thermal damage. Striation formation is another defect in laser cutting. These drawbacks limit advanced ceramics in engineering applications. In this work, various lasers and machining techniques are investigated to explore the feasibility of high-quality laser machining different thicknesses of alumina. The main contributions include: (i) Fibre laser crack-free cutting of thick-section alumina (up to 6-mm-thickness). A three-dimensional numerical model considering the material removal was developed to study the effects of process parameters on temperature, thermal-stress distribution, fracture initiation and propagation in laser cutting. A rapid parameters optimisation procedure for crack-free cutting of thick-section ceramics was proposed. (ii) Low power CW CO2 laser underwater machining of closed cavities (up to 2-mm depth) in alumina was demonstrated with high-quality in terms of surface finish and integrity. A three-dimensional thermal-stress model and a two-dimensional fluid smooth particle hydrodynamic model (SPH) were developed to investigate the physical processes during CO2 laser underwater machining. SPH modelling has been applied for the first time to studying laser processing of ceramics. (iii) Striation-free cutting of alumina sheets (1-mm thickness) is realised using a nano-second pulsed DPSS Nd: YAG laser, which demonstrates the capability of high average power short pulsed lasers in high-quality macro-machining. A mechanism of pulsed laser striation-free cutting was also proposed. The present work opens up new opportunities for applying lasers for high-quality machining of engineering ceramics.
70

Contribution au développement d'une approche simplifiée de la simulation numérique du formage incrémental / Contribution to the development of a Simplified Approach for the numerical simulation of incremental sheet forming process

Yu, Yan 11 December 2014 (has links)
Le formage incrémental est un procédé innovant de mise en forme des tôles métalliques utilisant un outil rigide à bout hémisphérique piloté par une machine à Commandes Numériques. La tôle encastrée sur son contour est déformée localement suivant une trajectoire d'outil, définissant ainsi la forme finale de la pièce. Les avantages de ce procédé sont sa très grande flexibilité, son faible coût d'outillage, et sa capacité à raccourcir la chaîne de conception et de fabrication. Le respect de la demande de diminution des coûts, et des délais de développement a rendu la simulation numérique incontournable. De nombreux modèles robustes de simulation basés sur la méthode des éléments finis permettent de prédire la formabilité et la qualité de la géométrie d'une pièce. Les algorithmes classiques de la simulation garantissent des résultats de qualités mais les temps de calculs nécessaire sont encore très élevés. Dans ce contexte, une Approche Simplifiée a été développée afin de réduire les temps de calculs. Cette approche permet de se soustraire à l'intégration de l'outil et de son contact avec la tôle dans l'algorithme de simulation numérique, en les remplaçant par une imposition locale et évolutive de déplacement sur certains nœuds supposés être en contact avec l'outil. Un complément est proposé dans cette thèse pour diminuer la durée d'une séquence de simulation, en utilisant un élément coque triangulaire DKTRF (Discrete Kirchoff Triangle Rotation Free). Cet élément permet de tenir compte des effets de membrane et de flexion avec un nombre de degré de liberté restreint, car les termes en flexion sont définis en fonction des déplacements nodaux des éléments adjacents. L'intégration de cet élément associé à l'Approche Simplifiée pour un maillage régulier dans un problème élasto-plastique donne des résultats géométriques et comportementaux cohérents avec des temps de calculs considérablement réduit par rapport aux simulations numériques effectuées sous ABAQUS®. Les résultats obtenus à l'aide de la simulation numérique d'un cas-test sont par la suite comparés à des résultats expérimentaux, permettant ainsi de valider le modèle et d'étudier les influences des paramètres du procédé sur la pièce finale. Pour ce faire, une méthodologie d'essai expérimentale est développée afin de mieux estimer l'efficacité du procédé de formage incrémentale sur une machine à Commandes Numériques. La technique de mesure utilisée pour caractériser la géométrie (épaisseur et profil) de la pièce est la méthode de numérisation. Cet outil de mesure, retranscrit le plus fidèlement la géométrie de la pièce par l'intermédiaire de caméras et d'un logiciel de post-traitement. Particulièrement bien adapté pour l'évaluation du profil, la méthode d'acquisition reste cependant à optimiser notamment pour l'évaluation de l'épaisseur de la tôle / The incremental sheet forming (ISF) is an innovative process in sheet metal forming method by using a hemispherical rigid tool controlled by Computerized Numerical Control machine (CNC). The clamped sheet is locally deformed following a tool path, defining thus the final geometry of the part. The advantages of this method are its high flexibility, its low tooling cost, and its ability to shorten the design and manufacturing chain. The application of the reduction of the overall costs, and development time made the numerical simulation essential. Many robust simulation models based on the finite element method enable to predict the formability and the geometrical quality of the part. Classic algorithms of simulation ensure reliable quality results but necessary computation times (CPU) are still very long. In this context, a Simplified Approach has been developed to reduce the computation time. This approach allows avoiding the integration of the tool and its contact with the sheet into the numerical simulation, by replacing them with a local and progressive displacement imposition of certain nodes supposed to be in contact with the tool. A complementary solution is proposed within this thesis to reduce the CPU times of a simulation sequence, by using a shell element called DKTRF (Discrete Kirchhoff Triangle Rotation Free). This element takes account of the membrane and bending effects with restricted numbers of degrees of freedom, as the flexion terms are defined in accordance with the nodal translational displacements of the adjacent elements. The integration of this element combined with the Simplified Approach for a regular mesh in an elastoplastic problem gives consistent outcomes in geometric and behavioural, with significant diminution of CPU times in comparison with the industrial numerical simulation performed on ABAQUS©. Results obtained by means of numerical simulation of a study case are then compared with experimental results, thereby enabling to validate the model and to study the influences of process parameters on the final piece. To do this, an experimental test procedure is developed in order to evaluate the efficiency of incremental forming process on a Computerized Numerical Control machine (CNC). The measurement technique used to characterize the geometry (thickness and profile) of the piece is the scanning method. The measurement tool, transcribed accurately the geometry of the part via cameras and post-treatment software. Particularly well-suited for the assessment of the profile, the acquisition method remains to be optimize especially for assessing the thickness of the sheet

Page generated in 0.0296 seconds