• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 11
  • 10
  • 9
  • 9
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Μελέτη των παραμέτρων του κεραυνού σε πληγέν κτίριο

Μπελεκούκιας, Ιωάννης 19 July 2012 (has links)
Το θέμα της παρούσας πτυχιακής εργασίας είναι η Μελέτη των παραμέτρων του κεραυνού σε πληγέν κτίριο. Πριν αναλυθούν οι επιπτώσεις του κεραυνού στο κτίριο είτε αυτό έχει αντικεραυνική προστασία είτε όχι, με την βοήθεια μαθηματικών μοντέλων, πρέπει να γίνει εκτενής αναφορά σε έννοιες αναγκαίες ως προς την κατανόηση των ατμοσφαιρικών ηλεκτρικών φαινομένων και ειδικότερα του κεραυνού. Έτσι στο πρώτο μέρος της εργασίας γίνεται εκτενής αναφορά και περιγραφή των ηλεκτρικών ατμοσφαιρικών φαινομένων και τον τρόπο που δημιουργείται ηλεκτρικό φορτίο στην ατμόσφαιρα. Στην συνέχεια γίνεται αναφορά και περιγραφή στο τρόπο με το οποίο φορτίζεται το σύννεφο και γενικότερα στην ηλεκτρική συμπεριφορά του για να φθάσουμε στην ανάλυση του κεραυνού. Στην προσπάθεια ανάλυσης των κεραυνών επιχειρείται η περιγραφή της φυσικής των κεραυνών, του ρεύματος του οποίου έχει και των σχετικών παραμέτρων που τον διέπουν, καθώς και της συχνότητας με την οποία συμβαίνουν οι κεραυνοί, χαρακτηριστικό το οποίο είναι πολύ σημαντικό για την μελέτη της αντικεραυνικής προστασίας ενός κτιρίου. Επίσης στην συνέχεια της εργασίας αναφέρονται οι τρόποι προσδιορισμού της ζώνης προστασίας ενός κτιρίου. Στο τελευταίο μέρος χρησιμοποιώντας το πρόγραμμα MATLAB (και συγκεκριμένα το γραφικό περιβάλλον Simulink) θα γίνει προσομοίωση του πλέγματος προστασίας για το υπό μελέτη κτίριο στον υπολογιστή. Για την μοντελοποίηση θα πρέπει να καθοριστούν η μορφή του ρεύματος που εισέρχεται στην κατασκευή λόγω του κεραυνού, το μοντέλο κάθε ράβδου και της συνολικής κατασκευής, καθώς και οι τιμές των ηλεκτρικών παραμέτρων. / This thesis attends to analyze the parameters of lightning in a directly stricken building. Before analyzing the effects of lightning in the building either has lightning protection or not, with the help of mathematical models, should be made extensive reference to concepts necessary to understand the atmospheric electrical phenomena and especially the lightning. So the first part of this thesis is a detailed report and description of electrical atmospheric phenomena and the way that electric charge generated in the atmosphere. The following sections discuss and describe the way in which the cloud is charged and the general electrical behavior of it, to get to the analysis of lightning. In the effort to analyze the lightning, is attempted describing the physics of lightning, the power which has and the relevant parameters that it has and the frequency with which lightings occur, a feature which is very important for the study of a building lightning protection. Also this thesis tries to describe methods of public buildings protection, the way they are placed and how we determine the buffer zone of a building. In the final part using the program MATLAB (namely the graphical Simulink) we will simulate the grid protection for the building under study in the computer. For modeling should specify the form of electricity entering the building due to lightning, the model of each bar and the overall design and the values of electrical parameters.
2

Μέτρηση και έλεγχος γειώσεως συστημάτων αντικεραυνικής προστασίας στα κτίρια του Πανεπιστημίου Πατρών

Χαραλαμπόπουλος, Ανδρέας 09 January 2012 (has links)
Γείωση είναι η αγώγιμη σύνδεση ενός σημείου κάποιου κυκλώματος ή ενός μη ¬ρευματοφόρου μεταλλικού αντικειμένου μιας εγκατάστασης με το έδαφος, με σκοπό να αποκτήσουν το ίδιο δυναμικό με τη γη, το οποίο θεωρείται -κατά σύμβαση-ίσο με μηδέν. Σκοπός του συστήματος γείωσης είναι να επιτυγχάνει την απαγωγή και διάχυση του κεραυνικού ρεύματος ή ρευμάτων βραχυκύκλωσης μέσα στη γη, με ταχύτητα και ασφάλεια, χωρίς να δημιουργούνται επικίνδυνες υπερτάσεις στον περιβάλλοντα χώρο, που δύνανται να πλήξουν τον άνθρωπο, καθώς και να προκαλέσουν ανεπανόρθωτες βλάβες στον εξοπλισμό. Η απόδοση των συστημάτων γείωσης που υπόκεινται σε κρουστικά ρεύματα διαδραματίζει σημαντικό ρόλο στην ασφαλή και αξιόπιστη λειτουργία ενός συστήματος ηλεκτρικής ενέργειας. Η συμπεριφορά της αντικεραυνικής προστασίας των κτιρίων, σχετίζεται με τα κρουστικά χαρακτηριστικά των διατάξεων γείωσης. Αντικείμενο της παρούσης διπλωματικής εργασίας αφορά τον έλεγχο και μέτρηση γειώσεων συστημάτων αντικεραυνικής προστασίας των προκατασκευασμένων κτιρίων , του μουσείου και άλλων επιλεγμένων κτιρίων του πανεπιστήμιου Πατρών. Στο Πρώτο Κεφάλαιο γίνεται περιγραφή κάποιων εισαγωγικών εννοιών σχετικά με τα μεγέθη του κεραυνού, τα είδη των κεραυνών, τον υπολογισμό της συχνότητας κεραυνικών πληγμάτων αλλά και τις επιπτώσεις που έχουν στις κατασκευές και στην ανθρώπινη ζωή. Στο Δεύτερο Κεφάλαιο γίνεται μια εισαγωγή στην έννοια της γείωσης, η εξοικείωση του αναγνώστη με βασικούς ορισμούς, αναφέρονται οι μέθοδοι γείωσης, οι τύποι των ηλεκτροδίων ενώ στη συνέχεια παρουσιάζονται τα κύρια χαρακτηριστικά μεγέθη που σχετίζονται με την απόκριση ενός συστήματος γείωσης. Στο Τρίτο κεφάλαιο γίνεται εκτενής αναφορά στην θεμελιακή γείωση η οποία παρουσιάζει αρκετά πλεονεκτήματα σε σχέση με άλλους τύπους γείωσης όπως είναι το χαμηλό κόστος, η χαμηλή τιμή αντίστασης αλλά και η ευελιξία που παρέχει αφού μπορεί να χρησιμοποιηθεί και για γείωση ΣΑΠ λαμβάνοντας υπόψη τις πρόσθετες ειδικές απαιτήσεις σύμφωνα με τα προτυπο ΕΛΟΤ EN 62305-3:2006 και το διεθνές IEC 62305-3:2006. Στο Τέταρτο κεφάλαιο παρουσιάζεται ο σχεδιασμός ενός Συστήματος Αντικεραυνικής Προστασίας (ΣΑΠ). Αρχικά γίνεται μια περιγραφή τον ενεργών διατάξεων σύλληψης κεραυνών ενώ στη συνέχεια αναφέρονται αναλυτικά όλα τα στάδια που απαιτούνται για την εγκατάσταση ενός ΣΑΠ . Στο Πέμπτο Κεφάλαιο παραθέτονται οι πίνακες με τις μετρήσεις και τις συνθήκες που επικρατούσαν κατά την διάρκεια των μετρήσεων καθώς και τα σημεία που μετρηθήκαν πάνω στην κάτοψη των κτιρίων . Η εργασία περατώνεται με την αναφορά συμπερασμάτων και τις βιβλιογραφικές αναφορές από όπου άντλησα το υλικό μου . / Grounding is the conductive connection of a circuit’s point, or of a non-current carrying metallic object of an installation to the ground, in order to obtain the same potential as the earth, which is, by convention, equal to zero. The purpose of the grounding system is to successfully carry off and diffuse the lightning current or short-circuit currents into the earth, quickly and safely, without causing dangerous overvoltages in the surrounding area, which can affect humans, and cause irreparable damages to the equipment . The performance of grounding systems subjected to impulse currents, play an important role in safe and reliable operation of a power system. The behavior of lightning protection of buildings, associated with impact characteristics of grounding arrangements. The subject of this study is the control and measurement of earthing systems, lightning protection of prefabricated buildings, the museum and other selected buildings in the University of Patras. The first chapter contains a description of some import concepts on sizes of lightning, types of lightning, calculating the frequency of lightning shocks and their effects on structures and human life. The second chapter is an introduction to the concept of grounding, to familiarize the reader with basic definitions, referred to the grounding methods, types of electrodes and then present the main featured items associated with the response of a grounding system. The third chapter is extensively referred to the foundational ground which presents several advantages over other types of ground such as low cost, low resistance value and the flexibility provided, that can be used for grounding LPS with the additional specific requirements in accordance with the standard ELOT EN 62305-3:2006 and international IEC 62305-3:2006. The fourth chapter presents the design of a lightning protection system (LPS). At the start there is a description of the active devices capture lightning and then details all the steps required to install an LPS. In the fifth chapter are given the tables of measurements and conditions prevailed during the measurements and the points measured on the layout of buildings. The work ends with the report conclusions and bibliographical references from which I draw my material.
3

Κατανομή ρεύματος κεραυνού σε πληγείσα κατασκευή

Ματσιακάς, Κωνσταντίνος 30 December 2014 (has links)
Στα πλαίσια της παρούσας διπλωματικής εργασίας γίνεται αναφορά και μελέτη των επιπτώσεων κεραυνικών πληγμάτων σε διατάξεις χαμηλής τάσης και των τρόπων με τους οποίους ο άνθρωπος μπορεί να προστατέψει αυτές τις κατασκευές. Μετά την παρουσίαση των βασικών παραμέτρων του κεραυνού και των συνεπειών των πληγμάτων στις κατασκευές, μελετήθηκε και σχεδιάστηκε ένα σύστημα αντικεραυνικής προστασίας για ένα μοντέλο (υπάρχουσα κτηριακή κατασκευή στην Αχαΐα), το οποίο εν συνεχεία υποβλήθηκε σε κεραυνικό ρεύμα, μέσω προγράμματος εξομοίωσης, ώστε να παρατηρηθεί η συμπεριφορά του και να διαπιστωθούν τα επίπεδα ασφάλειας του. Σκοπός είναι η αποφυγή ζημιών λόγω κεραυνικών πληγμάτων. Η μελέτη έγινε σύμφωνα με τους διεθνείς κανονισμούς και πρότυπα ασφαλείας. Κάνοντας χρήση του λογισμικού προσομοίωσης EMTP – ATP , μελετήθηκε η μεταβατική συμπεριφορά δύο διαφορετικών συστημάτων γείωσης, ώστε να κριθεί αν είναι αποτελεσματικά ή όχι. Στο Κεφάλαιο 1 περιγράφεται το φυσικό φαινόμενο του κεραυνού, τα είδη του, ο μηχανισμός των ατμοσφαιρικών εκκενώσεων και τα φυσικά χαρακτηριστικά του. Στο Κεφάλαιο 2 αναφέρονται οι άσχημες συνέπειες που προκαλούν τα κεραυνικά πλήγματα σε κατασκευές, τη φύση και τον άνθρωπο. Στο Κεφάλαιο 3 παρουσιάζονται οι μέθοδοι προστασίας κατασκευών από κεραυνούς. Αναλύεται και περιγράφεται πλήρως η μελέτη και η διαδικασία επιλογής του συστήματος αντικεραυνικής προστασίας. Εν συνεχεία, παρουσιάζεται αναλυτικά η σχεδίαση του εξωτερικού συστήματος αντικεραυνικής προστασίας μιας κατασκευής τηρώντας τους κανονισμούς. Στο Κεφάλαιο 4 παρουσιάζεται η υπό μελέτη κτηριακή κατασκευή και αναλυτικά τα επιμέρους τμήματα του συστήματος αντικεραυνικής προστασίας που σχεδιάσαμε. Στο Κεφάλαιο 5 αναφέρονται διάφοροι τρόποι μοντελοποίησης του συστήματος και παρουσιάζεται ο επικρατέστερος, που χρησιμοποιήθηκε και στην παρούσα εργασία. Στη συνέχεια υπολογίζονται τα στοιχεία του κυκλώματος γείωσης, καθώς και του συστήματος συλλογής και των αγωγών καθόδου. Μετά τον υπολογισμό των παραμέτρων αυτών σχεδιάζεται το [5] ισοδύναμο κύκλωμα της εγκατάστασης και γίνεται η εισαγωγή τους στο πρόγραμμα εξομοίωσης ATP. Στο Κεφάλαιο 6 γίνεται η επιβολή του κεραυνικού ρεύματος στο κύκλωμα και παρατηρείται η συμπεριφορά του δυναμικού στα σημεία εκχύσεως καθώς και σε γειτονικούς κόμβους. Έπειτα παρουσιάζονται τα αποτελέσματα υπό μορφή γραφημάτων και συγκεντρωτικών πινάκων. Στο τέλος, παρατίθενται παρατηρήσεις και συμπεράσματα. / In this thesis reference and study is made concerning the impact of lightning strikes in low voltage systems and the ways in which humans can protect such structures. After the presentation of the basic parameters of lightning and its consequences on structures, a lightning protection system model was studied and designed (for an actual house in Achaia). After been subjected to lightning current through emulation, observation of its behavior is made, and conclusion to the safety levels. Its purpose is to prevent damage due to lightning strikes. The emulation was made according to the international regulations and standards. Using the simulation software EMTP - ATP, we studied the transient behavior of two different grounding systems, to determine whether they are effective or not. Chapter 1 describes the natural phenomena of lightning, the categories, the mechanism of atmospheric discharges and natural features. Chapter 2 deals with the bad consequences caused by lightning strikes to structures, nature and man. Chapter 3 presents the methods of construction of lightning protection. Fully analyzed and described the study and selection process of the lightning protection system. It then gives a detailed design of the external lightning protection system of a structure in compliance with the regulations. Chapter 4 presents the study brick and mortar construction and detail the individual parts of the lightning protection system that we designed. Chapter 5 suggests several ways of modeling the system and the dominant, the one that we preferred in this thesis, is presented. Then there is the calculation of the grounding circuit elements, the collection system and conductors. After the calculation of these parameters, an equivalent circuit of the installation is designed and they are imported into the simulation software ATP. In Chapter 6 we impose the lightning current in the circuit and observe the dynamic behavior of the discharge points and adjacent nodes. Then follows the presentation of the results in forms of graphs and concentrated tables. In the end, remarks and conclusions are made.
4

Υλοποίηση υπολογιστικού προγράμματος για την εκτίμηση κινδύνου από κεραυνούς σε κατασκευές

Κανελλόπουλος, Νικόλαος 19 May 2011 (has links)
Σκοπός αυτής της διπλωματικής εργασίας είναι η υλοποίηση υπολογιστικού προγράμματος για την αντικεραυνική προστασία σε κατασκευές. Επίσης μέσω αυτής της εργασίας γίνεται αναφορά στο Ελληνικό Πρότυπο του Ελληνικού Οργανισμού Τυποποίησης (ΕΛΟΤ) 1197 και στο Διεθνές Πρότυπο IEC 62305-2. Το πρόγραμμά μας βασίζεται στα δυο αυτά πρότυπα και μελετά κυρίως την χρησιμότητα ή μη του Συστήματος Αντικεραυνικής Προστασίας (ΣΑΠ). Παρακάτω παρατίθενται τα περιεχόμενα του κάθε κεφαλαίου της εν λόγω εργασίας. Στο 1ο κεφαλαίο γίνεται μια αναφορά στα χαρακτηριστικά και στο φυσικό φαινόμενο του κεραυνού και στις ζημιές που προκαλούνται από τους κεραυνούς καθώς και στη σημασία που έχει το αλεξικέραυνο. Στο 2ο κεφάλαιο γίνεται αναφορά στην δομή και τις προδιαγραφές του αλεξικέραυνου σύμφωνα με το Ελληνικό Πρότυπο του ΕΛΟΤ 1197. Επίσης αναφέρεται η επιλογή της στάθμης προστασίας, ανάλογα με την τιμή της αποτελεσματικότητας που έχουμε υπολογίσει. Επιπροσθέτως γίνεται μια λεπτομερέστερη επεξήγηση της διαδικασίας επιλογής του (ΣΑΠ) μέσω του διαγράμματος ροής. Στο 3ο κεφάλαιο γίνεται αναφορά στην αποτελεσματικότητα του αλεξικέραυνου από μαθηματική πλευρά σύμφωνα με το Διεθνές Πρότυπο IEC 62305-2. Επίσης εξετάζει το θέμα προστασίας με χρήση πιθανοτήτων και κατηγοριοποιεί τους κινδύνους με ποικίλα κριτήρια. Επιπροσθέτως δίνεται ένα ενδεικτικό διάγραμμα ροής για τον υπολογισμό κινδύνου. Στο 4ο κεφάλαιο γίνεται αναφορά στο υπολογιστικό πρόγραμμα που χρησιμοποιήσαμε για την υλοποίηση της εργασίας. Επίσης αναφέρονται λίγα λόγια για την Java και το πακέτο Swing. Στο 5ο κεφάλαιο περιγράφεται το πρόγραμμα που προέκυψε στα πλαίσια αυτής της διπλωματικής εργασίας. Ο υπολογισμός των παραμέτρων για μεγάλες κατασκευές είναι μια επίπονη διαδικασία. Έτσι στα πλαίσια της εργασίας αυτής αναπτύχθηκε ένα υπολογιστικό πρόγραμμα για τον υπολογισμό του κινδύνου από κεραυνικά πλήγματα σε κατασκευές. Εξάλλου αυτό ήταν και το πιο δημιουργικό κομμάτι της, η εφαρμογή της θεωρίας. Αναλύεται ο τρόπος λειτουργίας του, και η χρησιμότητά του σε έναν μελετητή ΣΑΠ. Στο 6ο κεφάλαιο δίνονται παραδείγματα και εφαρμογές τόσο για το Ελληνικό Πρότυπο του Ελληνικού Οργανισμού Τυποποίησης (ΕΛΟΤ) 1197 όσο και για το Διεθνές Πρότυπο IEC 62305-2. Στο 7ο κεφάλαιο αναφέρονται τα συμπεράσματα από την εργασία αυτή και η πιθανή μελλοντική χρήση του υπολογιστικού προγράμματος που δημιουργήθηκε. Τέλος αναφέρονται πιθανές βελτιώσεις που μπορούν να γίνουν σε αυτό. / Purpose of this diploma thesis is the implementation of computer program regarding the lighting protection at the area of constructions. In addition through this study reference is made to Greek Model of Hellenic Organization of Standardization 1197 and scheme of International Model IEC 62305-2. The program is based on two models each of which makes reference to the utility or not of the Lighting Protection System (LPS). Below we state the contents of each chapter of the relative work. At the first chapter makes reference at the characteristics to the physical phenomenon of lighting. As well as an analysis is done of the term ¨thunder¨, which is integral connected to the phenomenon of lighting and to the several kinds of discharges. Finally a reference is made at the damages caused by lightings and to the necessity which disposes the lighting rod. At the second chapter reference is made to the structure of unit of lighting rod according to Greek Model of Hellenic Organization of Standardization 1197. The level of protection is mentioned proportionally to the unit of resulting estimated. A further explanation of the course selection of Lighting Protection System (LPS) through flowchart. At the third chapter reference is made to the effectiveness of lighting rod in connection to mathematic view according to Model of International IEC 62305-2. The theme of protection by using possibilities categorize the risks in various criterions. For explanation purposes a diagram of flowchart is given for risk to be estimated. At the fourth chapter reference is made to the computational program used to fulfil the study. A light mention is made to the Java language and Swing package. At the fifth chapter we shall describe the program produced keeping the frames of this diplomatic essay. The estimation of parameters of big structures is a hard to be done job. Therefore a program regarding the risks caused by lightings has been defiled. Many insist that this part of job is the most creative transforming theory to action. We are going to analyze the way of function and particularities even its use to the researcher of Lighting Protection System (LPS). At the sixth chapter examples and applications are given for the Greek Model of Hellenic Organization of Standardization 1197 as well as the International Model IEC 62305-2. At the seventh chapter we reference the conclusions of this thesis and we propose future uses of the computational program that we implemented. Finally we reference possible improvements that we can make to this.
5

Αντικεραυνική προστασία ανεμογεννητριών

Σιάνας, Δημήτριος 31 May 2012 (has links)
Η αιολική ενέργεια είναι μια ανανεώσιμη, «καθαρή» μορφή ενέργειας, που δε μολύνει το περιβάλλον και είναι ανεξάντλητη. Οι ανεμογεννήτριες βρίσκονται συνήθως σε τοποθεσίες με υψηλό υψόμετρο καθώς και σε επίπεδη ύπαιθρο, κάτι που δικαιολογεί τον υψηλό αριθμό κεραυνικών πληγμάτων, τα οποία προκαλούν πολλά προβλήματα στις εγκαταστάσεις. Ο κεραυνός αποτελεί ένα ατμοσφαιρικό ηλεκτρικό φαινόμενο το οποίο θα μπορούσε να ορισθεί ως μια μορφή ηλεκτρικής διάσπασης, χαρακτηριζόμενης από υψηλό ρεύμα, που συμβαίνει σε πολύ μεγάλα διάκενα. Για την καλλίτερη κατανόηση του φαινομένου αυτού, αρχικά περιγράφηκε η ηλεκτρική κατάσταση της γης και η ηλεκτρική συμπεριφορά των νεφών καθώς και οι επιπτώσεις των πληγμάτων των κεραυνών. Αυτά αφορούν στην ανθρώπινη ζωή και στις κατασκευές, στις οποίες διακρίνονται σε θερμικές, μηχανικές και ηλεκτρικές επιπτώσεις. Η αντικεραυνική προστασία των ανεμογεννητριών παρουσιάζει σημαντικές δυσκολίες, με σημαντικότερη την προστασία των περιστρεφόμενων πτερυγίων. Τα κεραυνικά πλήγματα επηρεάζουν αρχικά τα συστήματα ελέγχου, στη συνέχεια τα υπόλοιπα ηλεκτρονικά συστήματα και τελευταία τα πτερύγια και τους αισθητήρες. Τα μηχανικά τμήματα, όπως τα συστήματα πέδησης (αν υπάρχουν), τα μηχανικά φρένα και η ηλεκτρική γεννήτρια δεν επηρεάζονται σε υψηλό βαθμό. Καθώς ο ακριβής τρόπος που το κεραυνικό πλήγμα δρα πάνω στην ανεμογεννήτρια δεν είναι απόλυτα γνωστός, είναι απαραίτητο να βρεθούν ασφαλείς μέθοδοι αντικεραυνικής προστασίας των ανεμογεννητριών που να βασίζονται στο πρότυπο IEC 61400-24. Στο τρίτο κεφάλαιο της παρούσας εργασίας παρουσιάζεται η δομή και τα χαρακτηριστικά λειτουργίας των ανεμογεννητριών. Η ανεμογεννήτρια αποτελείται από τρία βασικά μέρη, κάθε ένα από τα οποία αποτελούνται από άλλα επιμέρους δομικά στοιχεία. Τα τρία βασικά δομικά μέρη μιας ανεμογεννήτριας είναι η νασέλλα, ο πύργος και η βάση. Ο πλέον δημοφιλής τύπος ανεμογεννήτριας είναι ο οριζόντιος τύπος, ο οποίος χαρακτηρίζεται από ένα στροφέα τύπου προπέλας που στηρίζεται πάνω ένα οριζόντιο άξονα με δύο ή τρία πτερύγια. Η ολική ισχύς που υπάρχει στον άνεμο και μπορεί να δεσμευτεί με ένα ανεμοκινητήρα είναι: PA=1/2*p*S*V3. Διακρίνουμε τρεις ταχύτητες στην λειτουργία μιας ανεμογεννήτριας: α) την ταχύτητα έναρξης, β) την ονομαστική ταχύτητα και γ) την ταχύτητα αποσύζευξης. Στη συνέχεια παρουσιάζονται οι επιπτώσεις του κεραυνικού πλήγματος στις ανεμογεννήτριες. Στο σημείο αυτό γίνεται αναφορά στο πρότυπο IEC 61400-24 και κυρίως στις παραγράφους που αφορούν στα πτερύγια των ανεμογεννητριών. Εκτός από τις βλάβες στα πτερύγια που είναι τα πιο εκτεθειμένα μέρη της ανεμογεννήτριας το πλήγμα του κεραυνού έχει επιπτώσεις στα έδρανα κύλισης, στο κιβώτιο ταχυτήτων και στο ανεμόμετρο. Επίσης οι περιελίξεις της γεννήτριας και ο εξοπλισμός ελέγχου και παρακολούθησης μπορεί να υποστούν σοβαρές βλάβες. Οι επαγόμενες τάσεις είναι η τάση επαφής, η βηματική τάση και οι υπερτάσεις. Το πέμπτο και τελευταίο κεφάλαιο αφορά στην αντικεραυνική προστασία των ανεμογεννητριών. Αρχικά παρουσιάζεται η αντικεραυνική μέθοδος που εφαρμόστηκε από τους Παστρομά και συν. σε ένα αιολικό πάρκο στο Παναχαϊκό κοντά στην Πάτρα στην Ελλάδα [10]. Γίνεται υπολογισμός του επιπέδου προστασίας των ανεμογεννητριών με δύο τρόπους: α) εκτιμώντας την παράμετρο Nd για κτήρια που έχει ως μεταβλητή τον περιβαλλοντικό παράγοντα Ce και β) με το Nd να αφορά τις εκτιμήσεις για τις ανεμογεννήτριες έχοντας μια μεταβλητή, το ύψος της κατασκευής. Η παράμετρος E είναι ίδια και στις δύο περιπτώσεις. Στη συνέχεια περιγράφεται το σύστημα αντικεραυνικής προστασίας που εφαρμόζεται για την προστασία των πτερυγίων των ανεμογεννητριών, καθώς και τα αποτελέσματα πειραματισμών για την ανάπτυξη ενός υποδοχέα, ο οποίος να έχει επαρκή χωρητικότητα για «σκληρές» κεραυνικές συνθήκες [21]. Στα πειράματα για τη μελέτη των επιπτώσεων των κεραυνικών πληγμάτων σε πτερύγια, χρησιμοποιήθηκαν τρεις διαφορετικοί τύποι πτερυγίων, που διέθεταν τρείς διαφορετικούς τύπους υποδοχέων. Ο πρώτος τύπος διέθετε έναν στερεό μεταλλικό υποδοχέα στην άκρη του πτερυγίου, ο δεύτερος τύπος έναν κυκλικό υποδοχέα εγκατεστημένο στην πλευρά του πτερυγίου και ο τρίτος τύπος τρείς υποδοχείς. Ο ένας είχε σχήμα ράβδου και βρισκόταν στο άκρο του πτερυγίου και οι άλλοι ήταν μικροί μεταλλικοί υποδοχείς που βρίσκονταν και στις δύο επιφάνειες του πτερυγίου. Αυτοί οι τρείς τύποι υποδοχέων καλύπτουν τους περισσότερους τύπους που χρησιμοποιούνται γενικώς. Οι εύκαμπτες συνδέσεις στο εσωτερικό της νασέλλας προκαλούν μια παράκαμψη του ρεύματος του κεραυνού που καταλήγει στην βάση του πύργου. Οι ανεμογεννήτριες χρησιμοποιούν δαχτυλίδια ολίσθησης για να συνδέσουν την καλωδίωση της γεννήτριας με την σταθερή καλωδίωση. Το μεταλλικό πλαίσιο μέσα στην νασέλλα είναι συνδεμένο με την βάση της ανεμογεννήτριας με 50mm2 με XLPE μονωμένα καλώδια. Η νασέλλα, τα ρουλεμάν εκτροπής και ο πύργος συνδέονται και καταλήγουν στη βάση του πύργου. Οι αγωγοί καθόδου χρησιμοποιούνται για να οδηγήσουν με ασφάλεια το ρεύμα του κεραυνού στο σύστημα γείωσης. Το σύστημα γείωσης θα πρέπει να οδηγεί το ρεύμα του κεραυνού και να προστατεύει το προσωπικό από πτώσεις τάσης επαφής και βηματικές. Το ανεμόμετρο προστατεύεται επίσης από κεραυνικά πλήγματα. Στη συνέχεια παρουσιάζεται μία οδηγία για αντικεραυνική προστασία ανεμογεννητριών στη Ιαπωνία η οποία συνοψίζει τα αποτελεσματικά μέτρα για την αντικεραυνική προστασία στις εγκαταστάσεις ανεμογεννητριών, με βάση το ρεύμα των κεραυνών του χειμώνα, τις εργαστηριακές δοκιμές εφαρμογής ρευμάτων υψηλής τάσης σε πτερύγια ανεμογεννητριών και τη μελέτη των κεραυνικών σφαλμάτων σε μονάδες παραγωγής αιολικής ενέργειας [27]. Τελειώνοντας παρουσιάζεται μια πρόταση για μια καινούργια έννοια ζωνών αντικεραυνικής προστασίας των πτερυγίων των ανεμογεννητριών, σύμφωνα με την οποία η άκρη του πτερυγίου θεωρείται ως διαφορετική ζώνη από το υπόλοιπο πτερύγιο [28]. / Wind energy is a renewable, "pure" form of energy that does not pollute the environment and is inexhaustible. Wind turbines are usually sited on high altitude as well as flat countryside, explaining the high number of reported direct lightning strikes. Lightning is an atmospheric electrical phenomenon, characterized by high current, which occurs in very large gaps. For a better understanding of this phenomenon, it is firstly described the electrical behavior of the Earth and the clouds. It is also described the effects of lightning strikes, which are related to human life and structures (thermal, mechanical and electrical effects). Lightning protection of wind turbines presents several difficulties; the main is the protection of the rotating blades. Lightning strikes have impact firstly on control systems, then the rest electrical system and lastly the blades and sensors. Mechanical parts like gearbox (if exists), mechanical brakes and the electric generator are not affected in high degree. Additionally, taking into account that the way a lightning strike acts on a wind turbine is not clear at this time, makes it necessary to find a quite safe method based on the basics of lightning protection of equipment and wind turbines according to IEC 61400-24. The third chapter presents the structure and operation of wind turbines. The wind turbine consists of three major parts, each of which consist of other sub-components. The three main components of a wind turbine are the nasella, the tower and the base. The most popular type is the horizontal wind turbine type, which is characterized by a propeller-type rotor, resting on a horizontal axis with two or three blades. The total power produced by the generator is: PA = 1/2 * p * S * V3. The three operating speeds of a wind turbine are a) Cut-in speed, b) Rated speed and c) Cut-out speed. The fourth chapter presents the effects of lightning strikes on wind turbines. Standard IEC 61400-24 describes lighting protection of wind turbines. The lighting strike firstly affects the blades. Also affects the bearings, the gearbox and the anemometer. The generator and the control system may be seriously damaged from a lighting strike. The fifth and last chapter describes the lightning protection of wind turbines. Firstly, a practical lightning protection method is presented which was applied by Pastromas et al [10] to a wind park sited on Panachaiko area, near Patras Greece. This method seems to minimize the risk of damages to the turbines from eventual lightning strikes. It derived considering the damage statistics, the consequences on energy production and the evaluation of the risk of lightning damage to a wind turbine, based on IEC 61400-24. Then, the lightning protection applied to protect the turbine blades is described, as well as the results of lightning experiments and simulations for various lightning receptors that are generally used in wind turbines, in order to develop the lightning receptor to protect wind turbine blades under hard lightning condition [21]. The flexible connections, to the internal of nacelle cause a lightning current bypass from the plate, around the blade bearing and the main bearings via the nacelle frame to the tower foundation. The slip ring is an electromagnetic device which allows the transmission of power from a stationary to a rotating structure and connects the turbine wiring to the fixed wiring. The metal frame in the nacelle is bonded to the wind turbine foundation with 50mm2 Cu with XLPE insulation wires. Nacelle, yaw rings and tower are connected and ending to the tower foundation. The down conductor in the tower base is connected with the tower and the grounding system, which is constructed inside the foundation of the tower. The grounding system should lead the lightning current and protect the personnel from contact and step voltage drops. The wind turbine has an ultrasonic anemometer which is protected against lightning strikes by a steel ring around it. Then guidelines for wind power generation business toward selection of sites and protection of wind turbines against natural hazards in Japan are presented. This guideline summarizes effective measures on lightning protection of wind power generation equipments, based on measurement of lightning currents in winter, laboratory high-voltage and high-current tests on wind turbine blades investigation on lightning faults of wind power generation plants [27]. Finally, a new zoning concept of the lighting protection of the blades is presented, where the tip of the blade is treated as a different zone than the remaining part of the blade. The background of the new zoning concept is explained, and the principle is demonstrated used on existing blade
6

Μελέτη προστασίας μεγάλης δεξαμενής πλωτής οροφής από κεραυνούς και στατικό ηλεκτρισμό

Στεργίου, Ιωάννης 04 November 2014 (has links)
Στην παρούσα διπλωματική μελετάμε την προστασία μεγάλης δεξαμενής πλωτής οροφής, και συγκεκριμένα της 7-ΤΚ-102 των ΕΛΠΕ Βιομηχανικές Εγκαταστάσεις Ελευσίνας, από κεραυνούς και στατικό ηλεκτρισμό, και αποτελείται από τρία μέρη. Στο πρώτο μέρος παρουσιάζουμε την προστασία από κεραυνούς. Στα δέκα οκτώ πρώτα κεφάλαια παρουσιάζουμε την γενική θεωρία της προστασίας από κεραυνούς, σύμφωνα με τα πρότυπα και άλλες πηγές (που και αυτές βασίζονται στα πρότυπα). Με τη θεωρία αυτή θα μελετήσουμε την προστασία της δεξαμενής, αλλά μπορούμε γενικά να μελετήσουμε και την προστασία μιας οποιασδήποτε άλλης κατασκευής. Έτσι στα πρώτα κεφάλαια κάνουμε εισαγωγή στα γενικά περί κεραυνών, τα ηλεκτρικά ατμοσφαιρικά φαινόμενα, τη δημιουργία και τα είδη των κεραυνών, τους μηχανισμούς των ατμοσφαιρικών εκκενώσεων καθώς και τα είδη των κεραυνών μεταξύ σύννεφου - γης με τα οποία και θα ασχοληθούμε. Στη συνέχεια παρουσιάζουμε το θέμα αντιμετώπισης της αντικεραυνικής προστασίας από το πρότυπο IEC 62305 μέρη 1, 2, 3, 4 που θα αποτελέσει και τη βασική πηγή της μελέτης μας. Ακολούθως δίνουμε τις βασικές παραμέτρους του κεραυνικού ρεύματος, τα Επίπεδα Αντικεραυνικής Προστασίας και τις Κλάσεις του Συστήματος Αντικεραυνικής Προστασίας (I, II, III, IV), και ανά επίπεδο τα μέγιστα ρεύματα βάσει των οποίων γίνεται ο σχεδιασμός του Συστήματος Αντικεραυνικής Προστασίας (ΣΑΠ) από πλευράς αντοχής των υλικών και τα ελάχιστα ρεύματα βάσει των οποίων γίνεται ο σχεδιασμός του ΣΑΠ από πλευράς αναχαίτισης των κεραυνών (ύψος και πυκνότητα στοιχείων συστήματος συλλογής). Κατόπιν, δίνουμε ορισμένα στοιχεία σχετικά με τις προκαλούμενες βλάβες από κεραυνούς σε έμβια όντα, κατασκευές και εσωτερικά συστήματα, τα μέτρα προστασίας αυτών καθώς και τις διαδικασίες επιλογής των μέτρων. Ακολουθεί η αναλυτική παρουσίαση του ΣΑΠ. Τα μέρη αυτού (συστήματα συλλογής, αγωγοί καθόδου και γειώσεις), οι βασικές λειτουργίες και ιδιότητες ενός ΣΑΠ, το εξωτερικό και εσωτερικό ΣΑΠ, το απομονωμένο και μη- 5 απομονωμένο ΣΑΠ, τις απαιτήσεις υλικών του ΣΑΠ, τα φυσικά στοιχεία ως τμήματα του ΣΑΠ και οι απαιτούμενες προδιαγραφές αυτών. Τις μεθόδους σχεδιασμού των συστημάτων συλλογής για αναχαίτιση των κεραυνών (μέθοδος κυλιόμενης σφαίρας, μέθοδος πλέγματος και μέθοδος γωνίας προστασίας). Πληροφορίες για τους αγωγούς καθόδου, απαιτούμενος αριθμός, αποστάσεις και ύψη διασύνδεσης αυτών. Τύποι συστημάτων γείωσης και σύγκριση αυτών. Μέθοδοι και υποδείξεις τοποθέτησης των μερών του ΣΑΠ, ισοδυναμικές συνδέσεις και αποστάσεις ασφαλείας. Διαμοιρασμός ρεύματος, απαιτήσεις περιοριστών κρουστικών τάσεων και εντάσεων και σχεδιασμός του ΣΑΠ. Έλεγχοι, μετρήσεις και επιθεωρήσεις του ΣΑΠ. Έχοντας τελειώσει με τις γενικές πληροφορίες μπαίνουμε στο κύριο μέρος του υπολογισμού των κινδύνων από κεραυνούς (R1 κίνδυνος ανθρώπινης ζωής, R2 κίνδυνος απώλειας υπηρεσίας στο κοινό, R3 κίνδυνος απώλειας πολιτιστικής κληρονομιάς, R4 κίνδυνος οικονομικής απώλειας), αναλύοντας πρώτα τις πηγές των βλαβών, τους τύπους των βλαβών, τους τύπους των απωλειών, τις σχέσεις μεταξύ πηγής βλάβης, τύπου βλάβης και απώλειας. Δίνουμε τα βασικά για τον διαχωρισμό μιας κατασκευής ή υπηρεσίας σε ζώνες για υπολογισμό των συνιστωσών των κινδύνων ανά ζώνη και την οικονομικότερη λήψη μέτρων ανά ζώνη αντί γενικών μέτρων. Ο κάθε κίνδυνος υπολογίζεται σαν άθροισμα των συνιστωσών αυτού ανά ζώνη και η κάθε συνιστώσα προκύπτει από το άθροισμα των όρων της, όλων των ζωνών. Η κάθε συνιστώσα υπολογίζεται από μία βασική εξίσωση. Τα δεδομένα που απαιτούνται για τον υπολογισμό δίνονται στη συνέχεια και είναι πρώτον ο υπολογισμός του μέσου ετησίου αριθμού επικινδύνων περιστατικών λόγω κεραυνικών πληγμάτων που απαιτεί τις ημέρες καταιγίδας ανά έτος από τον ισοκεραυνικό χάρτη της Ελλάδος, τις επιφάνειες συλλογής, κατασκευών διαφόρων σχημάτων απλών και συνθέτων και υπηρεσιών και διαφόρους απαιτούμενους συντελεστές σχετικούς με το περιβάλλον. Δεύτερον ο υπολογισμός των πιθανοτήτων βλάβης για μία κατασκευή ή υπηρεσία που εξαρτώνται από τα χαρακτηριστικά της κατασκευής, των γραμμών υπηρεσιών και περιβάλλοντος. Τρίτον ο υπολογισμός των διαφόρων τύπων απωλειών σε μία κατασκευή (ανθρώπινης ζωής, υπηρεσίας στο κοινό, πολιτιστικής κληρονομιάς και οικονομικής) που εξαρτώνται από την παρουσία ατόμων που δυνητικά κινδυνεύουν, την συνολική παρουσία ατόμων καθώς και από τα χαρακτηριστικά της κατασκευής, τον κίνδυνο φωτιάς, τα κατασταλτικά κατά της φωτιάς μέτρα και τυχόν ειδικούς κινδύνους (για τον R1). Αντίστοιχα για τους άλλους κινδύνους και για τους κινδύνους σε μία υπηρεσία. Τέλος συγκρίνουμε τον κάθε κίνδυνο με ένα επίπεδο ανεκτού κινδύνου, καθορισμένου από επίσημες αρχές ή ελλείψει αυτών από το IEC62305-2, και αν είναι μεγαλύτερος από αυτόν προτείνουμε τα κατάλληλα μέτρα ώστε να μειωθεί στον ανεκτό κίνδυνο ή κάτω από αυτόν και μετά γίνεται υπολογισμός της κοστολογικής αποτελεσματικότητας της προστασίας. Ακολουθούν μερικά χρήσιμα στοιχεία αφ’ ενός μεν για τον σχεδιασμό, αφ’ ετέρου δε για την επιλογή διαφόρων συντελεστών και μέτρων προστασίας σε υπάρχουσες κατασκευές όπως η ελαχίστη διατομή της θωράκισης για αυτοπροστασία ενός εισερχομένου καλωδίου για αποφυγή επικινδύνων σπινθήρων, το κρουστικό ρεύμα κεραυνού που ρέει σε εξωτερικά αγώγιμα τμήματα και σε εισερχόμενες γραμμές στην κατασκευή για τις διάφορες πηγές βλάβης, τους συντελεστές που επηρεάζουν το διαμοιρασμό του κεραυνικού 6 ρεύματος σε γραμμές ισχύος και γενικές πληροφορίες σχετικά με τους περιοριστές κρουστικών φαινομένων. Στο δέκατο ένατο κεφάλαιο μελετάμε την προστασία από κεραυνούς της μεγάλης δεξαμενής πλωτής οροφής 7-ΤΚ-102 των ΕΛΠΕ (Ελληνικών Πετρελαίων στις Βιομηχανικές Εγκαταστάσεις Ελευσίνας). Εφαρμόζοντας τα προηγούμενα κεφάλαια της μελέτης και βάσει των δεδομένων και χαρακτηριστικών της δεξαμενής, των γραμμών υπηρεσιών (ισχύος και ελέγχου) και του περιβάλλοντος αρχικά διαχωρίζουμε τη δεξαμενή σε τρεις ζώνες (εκτός, εντός και επί της δεξαμενής), υπολογίζουμε τις συλλεκτήριες επιφάνειες, τον αναμενόμενο ετήσιο αριθμό των επικινδύνων συμβάντων, τους διάφορους εμπλεκόμενους συντελεστές, τις πιθανότητες βλάβης, τις απώλειες και τέλος τις συνιστώσες κινδύνου και τον συνολικό κίνδυνο ανθρώπινης ζωής (R1) που μας ενδιαφέρει και τον συγκρίνουμε με τον ανεκτό κίνδυνο RT = 10-5. Λόγω των διαφορετικών συνθηκών λειτουργίας και δεκαετούς μεγάλης συντήρησης της δεξαμενής ο R1 υπολογίσθηκε και για τις δύο περιπτώσεις. Για την περίοδο λειτουργίας βρέθηκε R1 = 2,968x10-5 > 10-5 = RT και για μείωση του κινδύνου προτείνεται η απαγόρευση της ανόδου επί της δεξαμενής σε ημέρες καταιγίδας οπότε θα έχουμε R1 = 0. Για την περίοδο δεκαετούς συντήρησης βρέθηκε R1 = 2,011x10-6 < 10-5 = RT οπότε δεν απαιτούνται μέτρα προστασίας. Στο δεύτερο μέρος μελετάμε την προστασία της δεξαμενής από στατικό ηλεκτρισμό κάνοντας αρχικά μια εισαγωγή στον στατικό ηλεκτρισμό σε σχέση με τα πετρελαιοειδή δηλαδή την γενική ταξινόμηση των πετρελαιοειδών, τους στατικούς και μη συσσωρευτές, τα εύφλεκτα χαρακτηριστικά των πετρελαιοειδών, την επικίνδυνη ατμόσφαιρα και την αποθήκευση αυτών. Στη συνέχεια αναφέρουμε τους κινδύνους στατικού ηλεκτρισμού από τη δημιουργία και συγκέντρωση αυτού, τη δημιουργία προαγωγών σπινθήρων, τη δημιουργία χώρου εύφλεκτων ατμών και τη δημιουργία σπινθήρων εναύσεως. Κατόπιν προτείνουμε μέτρα αποφυγής ή μείωσης του κινδύνου από στατικό ηλεκτρισμό όπως έλεγχο δημιουργίας και συσσώρευσης ηλεκτροστατικών φορτίων, οδηγίες αποφυγής ηλεκτροστατικής ανάφλεξης για δεξαμενές αποθήκευσης σε διάφορες λειτουργίες όπως γέμισμα, άδειασμα, μείξη, ανάδευση, καθαρισμός, αδρανοποίηση, κ.λπ. Στο τέλος του δευτέρου μέρους δίνουμε συγκεκριμένες οδηγίες επαρκούς γείωσης της δεξαμενής (και γενικότερα παρομοίων δεξαμενών) με εναλλακτικές μεθόδους. Στο τρίτο μέρος προτείνονται συγκεντρωτικά και επιγραμματικά τα μέτρα ασφαλείας από κεραυνό και στατικό ηλεκτρισμό για την 7-ΤΚ-102 σε δύο κατηγορίες. Πρώτον τα βασικά μέτρα σχεδιασμού και τα προληπτικά μέτρα λειτουργίας, επιθεώρησης και συντήρησης και δεύτερον τα κατασταλτικά μέτρα που θα πρέπει να υπάρχουν για καταστολή του οποιουδήποτε κινδύνου, που θα εκδηλωθεί παρά τα προληπτικά μέτρα, και περιορισμού της βλάβης στο ελάχιστο δυνατόν. Στο τέλος παρατίθενται τέσσερα υποβοηθητικά παραρτήματα. / --
7

Εφαρμογή της μεθόδου της κυλιόμενης σφαίρας στην αντικεραυνική προστασία της γέφυρας Ρίου- Αντιρρίου με χρήση υπολογιστή

Τσιρώνη, Ελένη 13 January 2015 (has links)
Έχει περάσει περισσότερο από ένας αιώνας από τότε, που ο Χαρίλαος Τρικούπης, Πρωθυπουργός της Ελλάδας οραματίστηκε τη κατασκευή μιας γέφυρας, η οποία θα ένωνε την δυτική Πελοπόννησο με την ηπειρωτική Ελλάδα, το Ρίο με το Αντίρριο. Την εποχή εκείνη, τα τρία χιλιόμετρα θάλασσας, που μεσολαβούσαν μεταξύ των δυο πόλεων, φάνταζαν αδύνατο να γεφυρωθούν. Οι δυσκολίες ήταν πάρα πολλές και η τεχνογνωσία δεν είχε ακόμη φτάσει σε τέτοια επίπεδα, έτσι ώστε να δώσει πνοή σ’ αυτό το μεγαλόπνοο όραμα. Τελικά, στα μέσα της δεκαετίας του 90’, μια γαλλοελληνική σύμπραξη, αποτελούμενη από όμιλο εταιριών και από τις δυο χώρες, ανέλαβε τη σχεδίαση και κατασκευή της γέφυρας. Τα έργα ξεκίνησαν τον Ιούλιο του 1998 υπό την επίβλεψη και καθοδήγηση του αρχιτέκτονα Berdj Mikaelian. Η κατασκευή της γέφυρας αναμένετο να ολοκληρωθεί το χρονικό διάστημα μεταξύ Σεπτεμβρίου και Νοεμβρίου του 2004, άλλα οι εργασίες επισπεύτηκαν ένεκα των Ολυμπιακών Αγώνων, που θα λάβαιναν χώρα στην Αθήνα την ίδια χρονιά. Η γέφυρα θεωρήθηκε ως ένα θαύμα της σύγχρονης μηχανικής και όλα τα απαραίτητα μέτρα είχαν ληφθεί για την άρτια λειτουργία της. Παρ’ όλα αυτά στις 27 Ιανουαρίου του 2005, έξι μόλις μήνες μετά τα εγκαίνια, ένας κεραυνός έπληξε ένα από τα καλώδια στήριξης, τα οποία ενώνουν το κατάστρωμα της γέφυρας με τους πυλώνες. Το υψηλής περιεκτικότητας σε πολυαιθυλένιο καλώδιο τυλίχτηκε στις φλόγες με αποτέλεσμα να καταστραφεί ολοσχερώς και να καταρρεύσει στο κατάστρωμα. Όλες οι απαραίτητες ενέργειες έγιναν ταχύτατα, έτσι ώστε να αντικατασταθεί το καλώδιο και να παραδοθεί η γέφυρα και πάλι στη κυκλοφορία το συντομότερο δυνατό. Όμως πλέον ήταν φανερό ότι η αντικεραυνική προστασία της γέφυρας δεν ήταν αρκετή και αποτελεσματική. Στη συνέχεια του κειμένου θα γίνει ανάλυση του παραπάνω συμβάντος, αφού πρώτα γίνει αναφορά σε κάποιες βασικές αρχές γύρω από το φαινόμενο του κεραυνού και των συστημάτων αντικεραυνικής προστασίας. / More than a century has passed, since Charilaos Trikoupis, Prime Minister of Greece had contemplated the construction of a bridge that would connect western Peloponnese with the mainland of Greece, the city of Rion with Antirio. Back then, the three kilometers of sea water which separated the two cities, seemed impossible to be bridged. The difficulties were many and the know how had not reached that level, where it would make a great vision such as this, possible. Eventually, in the mid 90s, a greek-french collaboration, composed by a group of companies from both countries, took over the design and the building of the bridge. Construction works started in July of 1998 under the supervision and guidance of the architect Berdj Mikaelian. The construction of the bridge was expected to be completed during the period of September to November of 2004, but works were accelerated because of the Olympic games that would take place in Athens, that same year. The bridge was considered to be a miracle of modern mechanics and all the necessary measures were taken for its perfect operation. However, on January 27 of 2005, just six months after the opening of the bridge, a lightning stroke cut down one of the longest stay cables that connected the deck of the bridge to the pylons. The high density polyethylene cable was set on fire, and as a result of that the cable was completely destroyed and fell on the deck. All the necessary means were taken, in order to replace the cable and get traffic back on the bridge as soon as possible. It was obvious at that point that the lightning protection of the bridge was neither sufficient or effective enough. In the following chapters there are an analysis on the lightning incident on the bridge, after mentioning the natural phenomenon of lightning and the definition and the mail principals of the lightning protection system of a structure.
8

Αντικεραυνική προστασία κτηρίων μεγάλου ύψους και εφαρμοσμένη υπολογιστική εξομοίωση

Νικολάου, Νικόλας 28 August 2009 (has links)
Σκοπός αυτής της διπλωματικής εργασίας, είναι να παραθέσει τους τρόπους με τους οποίους προστατεύουμε ψηλά κτίρια - κατασκευές από κεραυνικά πλήγματα. Η προστασία των ψηλών κατασκευών είναι εντελώς διαφορετική από την προστασία χαμηλότερων κατασκευών αφού παύουν να ισχύουν οι κανόνες και τα επίπεδα προστασίας για κτίρια μέχρι 60m που ισχύουν στους διεθνείς οργανισμούς και τον Ε.Λ.Ο.Τ. Από τα 60m και πάνω οι συνθήκες είναι πολύ διαφορετικές, γι αυτό το λόγο γίνεται επεξήγηση για όλους τους παράγοντες που επηρεάζουν μια ψηλή κατασκευή όσον αφορά την προστασία της με τη γειωμένη μεταλλική ράβδο του αλεξικέραυνου του Franklin. Επίσης, μέσω της εφαρμοσμένης υπολογιστικής εξομοίωσης γίνεται προσπάθεια να βρεθεί η απόσταση διάσπασης ( stricking distance ) δηλαδή η ακτίνα προστασίας που καλύπτει μια κατασκευή με μέθοδο προστασίας την ακίδα Franklin. Τα αποτελέσματα και τα συμπεράσματα συγκρίνονται με πειραματικές μετρήσεις που έγιναν σε εργαστήριο. Παρακάτω παρατίθενται τα περιεχόμενα του κάθε κεφαλαίου της εν λόγω εργασίας. Στο 2ο κεφάλαιο γίνεται πλήρης ανάλυση για τη φυσική των κεραυνών. Γίνεται κατηγοριοποίηση των φάσεων που εξελίσσονται σε κεραυνό από τη γη μέχρι τα σύννεφα και παρουσιάζεται ο μηχανισμός των ατμοσφαιρικών εκκενώσεων. Ακόμα, γίνεται εξήγηση για τους ανοδικούς συνδετικούς οχετούς και την απόσταση διάσπασης από τα’ αλεξικέραυνα και τους οχετούς καθόδου. Στο 3ο κεφάλαιο αναπτύσσονται οι βασικοί παράμετροι και εξισώσεις που ισχύουν για ψηλά κτίρια όπως η ελάχιστη ακτίνα προστασίας-απόσταση διάσπασης, η ισοδύναμη επιφάνεια, η πιθανότητα της ελάχιστης ακτίνας διάσπασης και ανοδικών leader από τέτοια ψηλά κτίρια, ο επηρεασμός της ακίδας προστασίας και απόστασης διάσπασης από θετικούς κεραυνούς, τη σχέση που έχουν τα ψηλά κτίρια με την απόσταση διάσπασης και την επίδραση των γειτονικών κατασκευών. Ακολούθως, γίνεται περιγραφή της μεθόδου CVM για το χειρισμό ψηλών κατασκευών με επίπεδα και γωνίες προστασίας και πίνακες ρίσκου βασισμένα σε στατιστικές από κεραυνούς. Μετέπειτα, βλέπουμε πως επηρεάζεται η απόσταση διάσπασης από τη γεωμετρία της κατασκευής, από την γεωμετρία της ακίδας προστασίας Franklin, αλλά και από τη βέλτιστη ακτίνα κορυφής της ακίδας προστασίας Franklin. Στο 4ο κεφάλαιο γίνεται προσπάθεια να προσδιορίσουμε τη ζώνη προστασίας με τη χρήση υπολογιστικού μοντέλου. Αρχικά, αναφέρουμε κάποια στοχαστικά μοντέλα διάσπασης διηλεκτρικών. Μετά προχωρούμε στην περιγραφή με λεπτομέρεια των υπολογιστικών εξομοιώσεων που πραγματοποιήσαμε και την τακτική επεξεργασίας τους. Ακολούθως, προσδιορίσαμε τη ζώνη προστασίας των εξομοιώσεων για ύψος ακίδας 80cm και 100cm με γραμμικές εξισώσεις από προσαρμογή των μετρήσεων στις γραφικές παραστάσεις που δείχνουμε και αντίστοιχα στοιχεία για τις δυο ακίδες με αύξηση της τάσης 10%. Στο τέλος γίνεται επεξεργασία των δεδομένων και συγκρίνουμε τις μετρήσεις που βρήκαμε μεταξύ τους αλλά και με άλλους μελετητές. Αναφέρουμε τα αποτελέσματα της διεξαγωγής των υπολογιστικών εξομοιώσεων και τα συμπεράσματα. Στο 5ο κεφάλαιο κάνουμε ανακεφαλαίωση των θεωρητικών στοιχείων που ισχύουν για τις ψηλές κατασκευές και γενική συζήτηση. Επίσης εξάγονται χρήσιμα συμπεράσματα από τις υπολογιστικές εξομοιώσεις που πραγματοποιήθηκαν τόσο για την απόσταση διάσπασης όσο και για τις εξομοιώσεις που πραγματοποιήσαμε / The purpose of this project is to set out the possible ways that protect tall structures from lightning strikes. The protection of the tall structures is a completely different task from the protection of the shorter structures. That is because the rules and the protection levels applied by National Organizations (International Committee) and Ε.Λ.Ο.Τ. that concern structures to 60 meters, cease to exist in the case of taller structures. Concerning the structures that are taller than 60 meters the protection circumstances are very different from those of shorter structures. That is why this thesis explain all the factors that affect a tall structure, as far as its protection with the “Franklin Rod” is concerned. Furthermore, through computer simulation the author attempted to determine the striking distance, which is the protection radius that covers a structure, by utilizing as a method of protection the Franklin Rod. The results and conclusions that arose were compared with experimental measurements that took place in the lab. Below, the content of each chapter of this thesis is described. In the second chapter it is attempted a thorough analysis of the nature of lightning. Then there is a categorization of the phases that evolve to a lightning, from the ground to the clouds. The mechanism of atmospheric evacuation is also presented. Moreover, the upward connection leaders, the striking distance from the lightning rods and the downward leaders are described and explained. In the third chapter, the basic parameters and equations that apply to tall buildings are described. Some of these parameters are the attractive radius, the striking distance, the equivalent exposure area, the weighted average attractive area, the upward leaders from such tall buildings, the influence of the Franklin rod, the striking distance from positive flashes, the relation that the tall structures have with the striking distance and finally the influence of the surrounding structures. In addition, the CVM (Collection Volume Method) is described which deals with tall structures by utilizing protection levels and derating angles and risk analysis tables based on lightning’s statistics. Moreover, we see how the striking distance is affected by the structure geometry, by the geometry of the Franklin rod but also by the optimum tip radius of Franklin rod. In the fourth chapter the author attempted to determine the protection zone by using a computer model. Firstly, some stochastic models of dielectric breakdown are described. Furthermore, a detailed description of the computer simulations that we accomplished and the method of processing them are described. Moreover, the author determined the protection zone of the simulations for rod height: 80cm and 100cm with linear equations, by using measurement fitting to graphs where we show the respective elements for the two rods by raising 10 % of the Volts of the measurement. In the end, the data were processed and a comparison of this thesis’ findings and that of other authors were compared. The author also describes the results of the computer simulations and the conclusions that arose. In the fifth chapter the author revised the theoretical elements that apply to the tall structures and makes reflections on the findings. Moreover, useful conclusions arise from computer simulations that took place as far as the striking distance as well as the simulation is concerned.
9

Κατασκευή υπολογιστικού προγράμματος εκτίμησης κινδύνου κεραυνού για επικίνδυνες κατασκευές

Καρβελάς, Ευάγγελος 19 January 2010 (has links)
Έγινε κατασκευή ενός προγράμματος το οποίο εξετάζει μια κατασκευή και υπολογίζει αναλυτικά τον κίνδυνο που αυτή διατρέχει λόγω κεραυνών. / The subject of this project is protection against lightning, meaning the measures needed to be taken for a building so that a possible lightning strike will not cause human or material damage. The first part consists of an essential theoretical approach on the lightning phenomenon. Both the causes, the consequences and the conditions in which the lightning occurs are being analyzed. Furthermore, the characteristics and the qualifications a Lightning Protection System needs to comply with, are given, according to the Greek standard ΔΛΟΣ 1197 and the European standard IEC 62305-2. The factors one examines to determine the risk, the technical details of the LPS, and the -step by step- calculation of the risk are being mentioned. After this analysis, the criteria whether the building is adequately protected, or not, are given, and in case the answer is negative, the procedure to design a safe LPS is given. Along with writing this essay, a computer program was produced. The program calculates the risk a building faces due to lightning. In the second part of the essay one can read the way this program works and the description of its construction. First, an algorithm approach of the procedure of risk calculation is given in detail. The program runs in Microsoft Excel and includes functions, menus, graphics and other special features. Given that the procedure was so complicated at some point, we had to use Visual Basic nested programming to produce a functional program. In the final part, significant parts of the code and some programming methods are described. The results this program gives, allow an engineer to have a good overview on the protection the lightning building provides, and to choose an effective, cost efficient LPS, if needed.
10

Εφαρμογή ακίδων Franklin στην αντικεραυνική προστασία της γέφυρας του Ρίου και σύγκριση με υποθετική εφαρμογή αλεξικέραυνων τύπου πρόωρης εκπομπής / Application of Franklin rods on the lightning protection of the bridge of Rion and comparison with hypothetical application of early streamer emission lightning systems

Φλωράτος, Γεράσιμος 09 January 2012 (has links)
Έχει περάσει περισσότερο από ένας αιώνας από τότε, που ο Χαρίλαος Τρικούπης, Πρωθυπουργός της Ελλάδας οραματίστηκε τη κατασκευή μιας γέφυρας, η οποία θα ένωνε την δυτική Πελοπόννησο με την ηπειρωτική Ελλάδα, το Ρίο με το Αντίρριο. Την εποχή εκείνη, τα τρία χιλιόμετρα θάλασσας, που μεσολαβούσαν μεταξύ των δυο πόλεων, φάνταζαν αδύνατο να γεφυρωθούν. Οι δυσκολίες ήταν πάρα πολλές και η τεχνογνωσία δεν είχε ακόμη φτάσει σε τέτοια επίπεδα, έτσι ώστε να δώσει πνοή σ’ αυτό το μεγαλόπνοο όραμα. Άλλωστε το σχέδιο φάνταζε πολύ ακριβό για τις οικονομικές δυνατότητες της χώρας μας εκείνης της εποχής. Παρ’ όλα αυτά το σχέδιο δεν εγκαταλήφθηκε ποτέ. Μελέτες γίνονταν συνέχεια με σκοπό να ληφθούν υπόψη όλες οι παράμετροι, όπως η σεισμικότητα της περιοχής, το εξαιρετικά μεγάλο βάθος του θαλάσσιου χώρου, η πιθανότητα δημιουργίας παλιρροϊκών κυμάτων μετά από ένα σεισμό, τα ασταθή υλικά που αποτελούσαν το πυθμένα της θάλασσας, η απομάκρυνση των τεκτονικών πλακών στον Κορινθιακό κόλπο, τα ισχυρά ρεύματα, οι άνεμοι και άλλα, που αποτελούσαν τροχοπέδη για τη δημιουργία της γέφυρας. Τελικά, στα μέσα της δεκαετίας του 90’, μια γαλλοελληνική σύμπραξη, αποτελούμενη από όμιλο εταιριών και από τις δυο χώρες, ανέλαβε τη σχεδίαση και κατασκευή της γέφυρας. Τα έργα ξεκίνησαν τον Ιούλιο του 1998 υπό την επίβλεψη και καθοδήγηση του αρχιτέκτονα Berdj Mikaelian. Η κατασκευή της γέφυρας αναμένετο να ολοκληρωθεί το χρονικό διάστημα μεταξύ Σεπτεμβρίου και Νοεμβρίου του 2004, άλλα οι εργασίες επισπεύθηκαν ένεκα των Ολυμπιακών Αγώνων, που θα λάβαιναν χώρα στην Αθήνα την ίδια χρονιά. Έτσι η γέφυρα παραδόθηκε στο κοινό στις 7 Αυγούστου του 2004, με την Ολυμπιακή φλόγα να την διασχίζει με κατεύθυνση την Αθήνα. Η γέφυρα θεωρήθηκε ως ένα θαύμα της σύγχρονης μηχανικής και όλα τα απαραίτητα μέτρα είχαν ληφθεί για την άρτια λειτουργία της. Παρ’ όλα αυτά στις 27 Ιανουαρίου του 2005, έξι μόλις μήνες μετά τα εγκαίνια, ένας κεραυνός έπληξε ένα από τα καλώδια στήριξης, τα οποία ενώνουν το κατάστρωμα της γέφυρας με τους πυλώνες. Ο κεραυνός έπληξε το ψηλότερο καλώδιο διαμέτρου 25cm, στη νοτιοδυτική πλευρά της γέφυρας, πάνω από το ii άνοιγμα των 286 μέτρων, κοντά στη περιοχή του Ρίου. Το υψηλής περιεκτικότητας σε πολυαιθυλένιο καλώδιο τυλίχτηκε στις φλόγες με αποτέλεσμα να καταστραφεί ολοσχερώς και να καταρρεύσει στο καταστρώμα. Όλες οι απαραίτητες ενέργειες έγιναν ταχύτατα, έτσι ώστε να αντικατασταθεί το καλώδιο και να παραδοθεί η γέφυρα και πάλι στη κυκλοφορία το συντομότερο δυνατό. Όμως πλέον ήταν φανερό ότι η αντικεραυνική προστασία της γέφυρας δεν ήταν αρκετή και αποτελεσματική. Στη συνέχεια του κειμένου θα γίνει ανάλυση του παραπάνω συμβάντος, αφού πρώτα γίνει αναφορά σε κάποιες βασικές αρχές γύρω από το φαινόμενο του κεραυνού και των συστημάτων αντικεραυνικής προστασίας. Συγκεκριμένα ακολουθούν πέντε κεφάλαια : I. Στο πρώτο κεφάλαιο γίνεται μια εισαγωγή στο φυσικό φαινόμενο του κεραυνού και τις διάφορες παραμέτρους του. II. Το κεφάλαιο 2 αναφέρεται στον ορισμό του συστήματος αντικεραυνικής προστασίας. III. Στο τρίτο κεφάλαιο γίνεται παρουσίαση της ακίδας του Franklin. IV. Το τέταρτο κεφάλαιο παρουσιάζει τα συστήματα αντικεραυνικής προστασίας πρώιμης εκπομπης (ESE) και γίνεται σύγκριση με την ακίδα του Franklin . V. Στο πέμπτο και τελευταίο κεφάλαιο αναλύεται το κεραυνικό πλήγμα στη γέφυρα. Γίνεται παρουσίαση της εφαρμογής ακίδων Franklin στο ΣΑΠ της γέφυρας και βελτίωσης αυτού. / More than a century has passed, since Charilaos Trikoupis, Prime Minister of Greece had contemplated the construction of a bridge that would connect western Peloponnese with the mainland of Greece, the city of Rion with Antirio. Back then, the three kilometers of sea water which separated the two cities, seemed impossible to be bridged. The difficulties were many and the know how had not reached that level, where it would make a great vision such as this, possible. Besides the project seemed extremely expensive for the country’s economic potential at that time. Despite all this, the project was never abandoned. Studies were made repeatedly, in order to take under consideration all the parameters, like the seismic activity of the area, the extraordinary depth of the sea, the possibility of a tsunami after an earthquake, the unstable materials that constituted the bottom of the sea, the movement of the tectonic plates in the Corinthian gulf away from one another, the strong currents, winds etc. All these factors acted as a brake for the construction of the bridge. Eventually, in the mid 90s, a greek-french collaboration, composed by a group of companies from both countries, took over the design and the building of the bridge. Construction works started in July of 1998 under the supervision and guidance of the architect Berdj Mikaelian. The construction of the bridge was expected to be completed during the period of September to November of 2004, but works were accelerated because of the Olympic games that would take place in Athens, that same year. Therefore the bridge was revealed to the public on the 7th of August 2004, with the Olympic Flame crossing it, on the way to Athens. The bridge was considered to be a miracle of modern mechanics and all the necessary measures were taken for its perfect operation. However, on January 27 of 2005, just six months after the opening of the bridge, a lightning stroke cut down one of the longest stay cables that connected the deck of the bridge to the pylons. The lightning struck the top 25cm diameter cable in the southwest fan of stays over the 286m span nearest Rion. The high density polyethylene cable was set on fire, and as a result of that the cable was completely iv destroyed and fell on the deck. All the necessary means were taken, in order to replace the cable and get traffic back on the bridge as soon as possible. It was obvious at that point that the lightning protection of the bridge was neither sufficient or effective enough. There are five chapters following: I. In the first chapter there is an introduction to the natural phenomenon of lightning and its characteristics II. The second chapter gives a definition of the lightning protection system of a structure III. In the third chapter, the Franklin rod is presented IV. The fourth chapters refers to the early streamer emission systems and compares them with the Franklin rod V. In the fifth and final chapter there is an analysis of the lightning incident on the bridge. The installation of Franklin rods on the lightning system of the bridge is presented, alongside with an enhancement of the protection.

Page generated in 0.0344 seconds