1 |
Mathematical modeling of association attempt with the base station for maximum number of customer premise equipments in the IEEE 802.22 networkAfzal, Humaira, Awan, Irfan U., Mufti, Muhammad R. January 2015 (has links)
No / Abstract:
Avoiding collision among contending customer premise equipments (CPEs) attempting to associate with a base station (BS), the only available solution in IEEE 802.22 standard is binary exponential random backoff process in which the contending CPEs retransmit their association requests. The number of attempts the CPEs sends their requests to the BS are fixed in IEEE 802.22 network. This paper presents a mathematical framework for helping the BS in determining at which attempt the majority of the CPEs become the part of wireless regional area network (WRAN) from a particular number of contending CPEs at a given initial contention window size.
|
2 |
Random Hopping for Cognitive Radio NetworksWang, Wen-cheng 25 July 2007 (has links)
Recently, with the fast development of wireless communications, the radio spectrum becomes a precious natural resource. Many researches and reports reveal the problems of inefficient spectrum utilization. Cognitive Radio (CR) technology is now developing for solving this critical problem. This technology will enable various kinds of wireless systems to look for and connect radio frequency spectrum that the locality leave unused by oneself, to offer the best service to user. The CR will pass in and out the idle frequency band according to the demand while receiving and dispatching the signal, avoid the frequency band that has been already used.
In CR network, the objective is to maximize the throughput of secondary users while limiting the probability of colliding with primary users below a prescribed level. In this paper, we consider a distributed secondary networks model where users seek spectrum opportunities independently that overlaying the primary networks to analyze the system performance and the effect to the primary users with the existence of both primary users and secondary users under the cognitive radio networks. In the cognitive system, due to the existence of noise and fading effect, error detection cannot be avoided. Therefore, we made a comparison to the difference of the efficiency among environments of different probability of miss detection. We also propose a random hopping method for all secondary users in system will re-sensing after a random period of time. Hereby, efficiently decreases the ratio of time that influences the primary users by the secondary users, and further research the factor that influences its efficiency.
|
3 |
WRAN Based on Cognitive Radio and its Perfromance AnalysisKuo, Hui-chin 12 February 2009 (has links)
none
|
4 |
An Effecient Scheme in IEEE 802.22 WRAN for Real Time and Non Real Time Traffic DelayR-Smith, Nawfal Al-Zubaidi, Humood, Khaled January 2013 (has links)
Cognitive radio network has emerged as a prevailing technique and an exciting and promising technology which has the potential of dealing with the inflexible prerequisites and the inadequacy of the radio spectrum usage. In cognitive radios, in-band sensing is fundamental for the protection of the licensed spectrum users, enabling secondary users to vacate channels immediately upon detection of primary users. This channel sensing scheme directly affects the quality-of-service of cognitive radio user and licensed user especially with the undesirable delay induced into the system. In this thesis, a combination of different delay reduction schemes from different papers has been introduced, the first paper [47] argues about performing fine sensing for non-real time traffic, while real time traffic continues transmission in the channel. The second paper [46] argues about performing fine sensing after multiple alarms that have been triggered. Both schemes have combined with applying data rate reservation as well in order to reduce as much as possible this crucial factor of delay for IEEE 802.22 wireless regional area network and to improve the channel utilization. Data rate reservation for real time users has been applied in order to reduce the queuing delay for real time services [47]. The average packet delay for the proposed scheme combination has been analyzed, with both numerical and simulation results. The results show that the scheme combination considerably reduces the average packet delay for both real time and non-real time services and hence satisfies the performance of IEEE 802.22 wireless regional networks. Index terms–Channel sensing, Cognitive radio, energy and feature detection, IEEE 802.22, quiet period. / Kognitiv radio nätverk har vuxit fram som en rådande teknik och en spännande och lovande teknik som har potential att hantera de oflexibla förutsättningar och den bristfälliga Radiospektrumanvändningens. I kognitiv radio, är i-band Sensing grundläggande för skyddet av de licensierade spektrumanvändare, möjliggör sekundära användare att utrymma kanaler omedelbart vid detektering av primära användare. Denna kanal sensing system påverkar direkt kvaliteten på tjänsterna för kognitiv radio användare och licensierade användaren särskilt med oönskad fördröjning induceras i systemet. I denna avhandling har en kombination av olika system delay minskning från olika tidningar införts, den första papper [47] argumenterar om att utföra fina avkänning för icke-realtid trafik, medan realtid trafiken fortsätter sändningen i kanalen. Den andra artikeln [46] argumenterar om att utföra fina avkänning efter flera larm som har utlösts. Båda systemen har i kombination med tillämpning datahastighet bokning samt för att minska så mycket som möjligt denna avgörande faktor för försening för IEEE 802,22 trådlös regionala nätverk och förbättra kanalutnyttjandet. Datahastighet reservation för realtidanvändare har tillämpats för att minska den queuing fördröjningen för realtidstjänster [47]. Den genomsnittliga paket fördröjning för det föreslagna systemet kombinationen har analyserats, med både numeriska och simulering resultat. Resultaten visar att systemet kombinationen avsevärt minskar den genomsnittliga paket fördröjning för både realtid och icke-verkliga tjänster tiden och därmed uppfyller prestanda IEEE 802,22 trådlösa regionala nätverk. / Kungsmarksvagen 71, karlskrona +4520939959
|
5 |
Receiver Design for Highly Mobile Wireless Regional Area Network / 高速移動広域無線通信システムにおける受信機に関する研究OUYANG, RUITING 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23549号 / 情博第779号 / 新制||情||133(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 原田 博司, 教授 大木 英司, 准教授 山本 高至 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DGAM
|
6 |
Enabling Cognitive Radios through Radio Environment MapsZhao, Youping 23 May 2007 (has links)
In recent years, cognitive radios and cognitive wireless networks have been introduced as a new paradigm for enabling much higher spectrum utilization, providing more reliable and personal radio services, reducing harmful interference, and facilitating the interoperability or convergence of different wireless communication networks. Cognitive radios are goal-oriented, autonomously learn from experience and adapt to changing operating conditions. Cognitive radios have the potential to drive the next generation of radio devices and wireless communication system design and to enable a variety of niche applications in demanding environments, such as spectrum-sharing networks, public safety, natural disasters, civil emergencies, and military operations.
This research first introduces an innovative approach to developing cognitive radios based on the Radio Environment Map (REM). The REM can be viewed as an integrated database that provides multi-domain environmental information and prior knowledge for cognitive radios, such as the geographical features, available services and networks, spectral regulations, locations and activities of neighboring radios, policies of the users and/or service providers, and past experience. The REM, serving as a vehicle of network support to cognitive radios, can be exploited by the cognitive engine for most cognitive functionalities, such as situation awareness, reasoning, learning, planning, and decision support. This research examines the role of the REM in cognitive radio development from a network point of view, and focuses on addressing three specific issues about the REM: how to design and populate the REM; how to exploit the REM with the cognitive engine algorithms; and how to evaluate the performance of the cognitive radios. Applications of the REM to wireless local area networks (WLAN) and wireless regional area networks (WRAN) are investigated, especially from the perspectives of interference management and radio resource management, which illustrate the significance of cognitive radios to the evolution of wireless communications and the revolution in spectral regulation. Network architecture for REM-enabled cognitive radios and framework for REM-enabled situation-aware cognitive engine learning algorithms have been proposed and formalized. As an example, the REM, including the data model and basic application programmer interfaces (API) to the cognitive engine, has been developed for cognitive WRAN systems. Furthermore, REM-enabled cognitive cooperative learning (REM-CCL) and REM-enabled case- and knowledge-based learning algorithms (REM-CKL) have been proposed and validated with link-level or network-level simulations and a WRAN base station cognitive engine testbed. Simulation results demonstrate that the WRAN CE can adapt orders of magnitude faster when using the REM-CKL than when using the genetic algorithms and achieve near-optimal global utility by leveraging the REM-CKL and a local search. Simulation results also suggest that exploiting the Global REM information can considerably improve the performance of both primary and secondary users and mitigate the hidden node (or hidden receiver) problem. REM dissemination schemes and the resulting overhead have been investigated and analyzed under various network scenarios. By extending the optimized link state routing protocol, the overhead of REM dissemination in wireless ad hoc networks via multipoint relays can be significantly reduced by orders of magnitude as compared to plain flooding. Performance metrics for various cognitive radio applications are also proposed. REM-based scenario-driven testing (REM-SDT) has been proposed and employed to evaluate the performances of the cognitive engine and cognitive wireless networks. This research shows that REM is a viable, cost-efficient approach to developing cognitive radios and cognitive wireless networks with significant potential in various applications. Future research recommendations are provided in the conclusion. / Ph. D.
|
7 |
The role of spectrum manager in IEEE 802.22 standardAfzal, Humaira, Mufti, Muhammad R., Nadeem, M., Awan, Irfan U., Khan, U.S. January 2014 (has links)
No / The IEEE 802.22 is the first worldwide standard for wireless regional area network (WRAN) based on cognitive radio
techniques. It provides access to use unused TV band without causing any harmful interference to the incumbents. This
paper aims to elaborate the significance of the Spectrum Manager (SM) in WRAN Base Station (BS). It is responsible to
maintain spectrum availability information of the cell. Using incumbent database, geolocation and spectrum sensing
results, the SM defines the status of the channels with respect to incumbent detection. On the basis of channel status, the
SM classifies the channel into different categories. A pseudocode has been proposed for the SM to perform channel
decision process in two steps. Spectrum etiquette procedure is activated due to incumbent detection, neighboring WRAN
cell detection/update, operating channel switching request and contention request obtained from neighboring WRAN
cells. An example is given to demonstrate this procedure in a WRAN cells. Spectrum handoff mechanisms is initiated
through the SM either when primary user is detected on the licensed channel or when the specified transmission time is
terminated as discussed in the IEEE 802.22 standard. Other responsibilities of the SM are to impose IEEE 802.22 policies
within the cell to ensure incumbent protection and maintain QoS in WRAN system. The policies are concerned with
events and their corresponding actions. The SM also controls the sensing behavior of the Spectrum Sensing Automation
(SSA), where SSA is an entity that must be present in all IEEE 802.22 devices which performs spectrum sensing through
spectrum sensing function (SSF) after receiving request from SM.
|
8 |
Modelling and analysis of dynamic spectrum sharing in cognitive radio based wireless regional area networks : modelling and performance evaluation of initialization and network association of customer premise equipments with the base station in cognitive radio based IEEE 802.22 wireless regional area networksAfzal, Humaira January 2014 (has links)
The development of the IEEE 802.22 standard is aimed at providing broadband access in rural areas by effectively utilizing the unused TV band, provided no harmful interference is caused to the incumbent operation. This thesis presents the analytical framework to evaluate the number of active customer premise equipments (CPEs) in a wireless regional area network. Initial ranging is the primary process in IEEE 802.22 networks for CPEs to access the network and establish their connections with the base station (BS). A comprehensive analysis of initial ranging mechanism is provided in this work and initial ranging request success probability is derived based on the number of contended CPEs and the initial contention window size. Further, the average ranging success delay is derived for the maximum backoff stages. The collision probability is highly dependent on the size of the initial contention window and the number of contended CPEs. To keep it at a specific level, it is necessary for the BS to schedule the required size of the initial contention window to facilitate the maximum number of CPEs to establish their connections with reasonable delay. Therefore, the optimized initial window size is proposed that meets the collision probability constraint for a particular number of contended CPEs. An analytical model is also developed to estimate the ranging request collision probability depending upon the size of initial contention window and the number of contended CPEs. Moreover, this approximation provides the threshold size for contention window to start the initial ranging process in the IEEE 802.22 network.
|
9 |
Inductorless balun low-noise amplifier (LNA) for RF wideband application to IEEE 802.22 / Um amplificador de baixo ruído banda larga, sem indutor, com alta linearidade e 24 dB de ganho para a banda do padrão IEEE 802.22Costa, Arthur Liraneto Torres January 2014 (has links)
Um novo circuito amplificador de 50 MHz - 1 GHz com alta linearidade para o padrão IEEE 802.22 “wireless regional area” (WRAN) é apresentado. Ele foi implementado sem nenhum indutor e oferece uma saída diferencial para ser utilizada como balun. Técnicas de cancelamento de ruído e aumento de linearidade foram usadas para melhorar a performace do amplificador de modo que eles pudessem ser otimizados separadamente. A linearidade foi melhorada utilizando transistores conectados como diodo. O amplificador foi implementado em um processo CMOS 130 nm, em uma área compacta de 136 m x 71 m. As simulações são apresentadas para esquemáticos pós-leiaute para duas classes diferentes de projeto: um visando a melhor linearidade e o outro a melhor Figura de Ruído (FR). Quando otimizado para melhor linearidade, os resultados de simulação atingem um ganho de tensão > 23.7 dB (ganho de potência > 19.1 dB), uma figura de ruído < 3.6 dB na banda inteira (com 2.4 dB min), um ponto de intersecção de terceira ordem (IIP3) > 3.3 dBm (7.6 dBm max) e um coeficiente de reflexão de entrada S11 < -16 dB. Quando otimizado para melhor figura de ruído, ele atinge um ganho de tensão > 24.7 dB (ganho de potência > 19.8 dB), uma FR < 2 dB na banda inteira, um IIP3 > -0.3 dBm e um S11 < -11 dB. Resultados de simulação Monte Carlo confirmam baixa sensibilidade à variabilidade de processo. Além disso, uma baixa sensibilidade com a temperatura na faixa de -55 até 125 C foi observada para Ganho, FR e S11. Consumo de potência é 17.6 mA sob fonte de alimentação de 1.2 V. / A new 50 MHz - 1 GHz low-noise amplifier circuit with high linearity for IEEE 802.22 wireless regional area network (WRAN) is presented. It was implemented without any inductor and offers a differential output for balun use. Noise cancelling and linearity boosting techniques were used to improve the amplifier performance in a way they can be separately optimized. Linearity was improved using diode-connected transistors. The amplifier was implemented in a 130 nm CMOS process in a compact 136 m x 71 m area. Simulations are presented for post-layout schematics for two classes of design: one for best linearity, another for best noise figure (NF). When optimized for best linearity, simulation results achieve a voltage gain > 23.7 dB (power gain > 19.1 dB), a NF < 3.6 dB over the entire band (with 2.4 dB min figure), an input third-order intercept point (IIP3) > 3.3 dBm (7.6 dBm max.) and an input power reflection coefficient S11 < -16 dB. When optimized for best NF, it achieves a voltage gain > 24.7 dB (power gain > 19.8 dB), a NF < 2 dB over the entire band, an IIP3 > -0.3 dBm and an S11 < -11 dB. Monte Carlo simulation results confirm low sensitivity to process variations. Also a low sensitivity to temperature within the range -55 to 125 C was observed for Gain, NF and S11. Power consumption is 17.6 mA under a 1.2 V supply.
|
10 |
Inductorless balun low-noise amplifier (LNA) for RF wideband application to IEEE 802.22 / Um amplificador de baixo ruído banda larga, sem indutor, com alta linearidade e 24 dB de ganho para a banda do padrão IEEE 802.22Costa, Arthur Liraneto Torres January 2014 (has links)
Um novo circuito amplificador de 50 MHz - 1 GHz com alta linearidade para o padrão IEEE 802.22 “wireless regional area” (WRAN) é apresentado. Ele foi implementado sem nenhum indutor e oferece uma saída diferencial para ser utilizada como balun. Técnicas de cancelamento de ruído e aumento de linearidade foram usadas para melhorar a performace do amplificador de modo que eles pudessem ser otimizados separadamente. A linearidade foi melhorada utilizando transistores conectados como diodo. O amplificador foi implementado em um processo CMOS 130 nm, em uma área compacta de 136 m x 71 m. As simulações são apresentadas para esquemáticos pós-leiaute para duas classes diferentes de projeto: um visando a melhor linearidade e o outro a melhor Figura de Ruído (FR). Quando otimizado para melhor linearidade, os resultados de simulação atingem um ganho de tensão > 23.7 dB (ganho de potência > 19.1 dB), uma figura de ruído < 3.6 dB na banda inteira (com 2.4 dB min), um ponto de intersecção de terceira ordem (IIP3) > 3.3 dBm (7.6 dBm max) e um coeficiente de reflexão de entrada S11 < -16 dB. Quando otimizado para melhor figura de ruído, ele atinge um ganho de tensão > 24.7 dB (ganho de potência > 19.8 dB), uma FR < 2 dB na banda inteira, um IIP3 > -0.3 dBm e um S11 < -11 dB. Resultados de simulação Monte Carlo confirmam baixa sensibilidade à variabilidade de processo. Além disso, uma baixa sensibilidade com a temperatura na faixa de -55 até 125 C foi observada para Ganho, FR e S11. Consumo de potência é 17.6 mA sob fonte de alimentação de 1.2 V. / A new 50 MHz - 1 GHz low-noise amplifier circuit with high linearity for IEEE 802.22 wireless regional area network (WRAN) is presented. It was implemented without any inductor and offers a differential output for balun use. Noise cancelling and linearity boosting techniques were used to improve the amplifier performance in a way they can be separately optimized. Linearity was improved using diode-connected transistors. The amplifier was implemented in a 130 nm CMOS process in a compact 136 m x 71 m area. Simulations are presented for post-layout schematics for two classes of design: one for best linearity, another for best noise figure (NF). When optimized for best linearity, simulation results achieve a voltage gain > 23.7 dB (power gain > 19.1 dB), a NF < 3.6 dB over the entire band (with 2.4 dB min figure), an input third-order intercept point (IIP3) > 3.3 dBm (7.6 dBm max.) and an input power reflection coefficient S11 < -16 dB. When optimized for best NF, it achieves a voltage gain > 24.7 dB (power gain > 19.8 dB), a NF < 2 dB over the entire band, an IIP3 > -0.3 dBm and an S11 < -11 dB. Monte Carlo simulation results confirm low sensitivity to process variations. Also a low sensitivity to temperature within the range -55 to 125 C was observed for Gain, NF and S11. Power consumption is 17.6 mA under a 1.2 V supply.
|
Page generated in 0.0387 seconds