• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 14
  • 10
  • 10
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Cognitive Algorithms for WRAN Signals

Lee, Chia-chih 27 August 2010 (has links)
In this thesis, we study the cognitive algorithm in digital television (DTV) bands for Wireless Regional Area Network (WRAN) signals. The WRAN standards are specified by the IEEE 802.22 Working Group. The principle of the proposed algorithm in this thesis is to recognize the band state by analyzing the transmitted signals in DTV bands. The received signals could be 4 possible options: 1.Noise 2.ATSC signal plus noise 3.WRAN signal plus noise 4.ATSC signal plus WRAN signal and noise. This thesis proposed an algorithm to cognize the WRAN signals, and the proposed schedule is 1.Cognitive algorithm for sensing ATSC signal 2.Cognitive algorithm for sensing WRAN signal. According to the result of this schedule, we will get the information of the band status. Later, WRAN will make use of cognitive radio technology we developed in the thesis, together with other cognitive information (such as channel capacity, system parameters, etc.), to sustain the WRAN signal transmission by making some adjustments of system parameters or the required bandwidth.
2

Mathematical modeling of association attempt with the base station for maximum number of customer premise equipments in the IEEE 802.22 network

Afzal, Humaira, Awan, Irfan U., Mufti, Muhammad R. January 2015 (has links)
No / Abstract: Avoiding collision among contending customer premise equipments (CPEs) attempting to associate with a base station (BS), the only available solution in IEEE 802.22 standard is binary exponential random backoff process in which the contending CPEs retransmit their association requests. The number of attempts the CPEs sends their requests to the BS are fixed in IEEE 802.22 network. This paper presents a mathematical framework for helping the BS in determining at which attempt the majority of the CPEs become the part of wireless regional area network (WRAN) from a particular number of contending CPEs at a given initial contention window size.
3

WRAN Based on Cognitive Radio and its Perfromance Analysis

Kuo, Hui-chin 12 February 2009 (has links)
none
4

Performance Analysis for WRANs

Zhang, Zhuang-wei 12 February 2009 (has links)
none
5

The role of spectrum manager in IEEE 802.22 standard

Afzal, Humaira, Mufti, Muhammad R., Nadeem, M., Awan, Irfan U., Khan, U.S. January 2014 (has links)
No / The IEEE 802.22 is the first worldwide standard for wireless regional area network (WRAN) based on cognitive radio techniques. It provides access to use unused TV band without causing any harmful interference to the incumbents. This paper aims to elaborate the significance of the Spectrum Manager (SM) in WRAN Base Station (BS). It is responsible to maintain spectrum availability information of the cell. Using incumbent database, geolocation and spectrum sensing results, the SM defines the status of the channels with respect to incumbent detection. On the basis of channel status, the SM classifies the channel into different categories. A pseudocode has been proposed for the SM to perform channel decision process in two steps. Spectrum etiquette procedure is activated due to incumbent detection, neighboring WRAN cell detection/update, operating channel switching request and contention request obtained from neighboring WRAN cells. An example is given to demonstrate this procedure in a WRAN cells. Spectrum handoff mechanisms is initiated through the SM either when primary user is detected on the licensed channel or when the specified transmission time is terminated as discussed in the IEEE 802.22 standard. Other responsibilities of the SM are to impose IEEE 802.22 policies within the cell to ensure incumbent protection and maintain QoS in WRAN system. The policies are concerned with events and their corresponding actions. The SM also controls the sensing behavior of the Spectrum Sensing Automation (SSA), where SSA is an entity that must be present in all IEEE 802.22 devices which performs spectrum sensing through spectrum sensing function (SSF) after receiving request from SM.
6

Enabling Cognitive Radios through Radio Environment Maps

Zhao, Youping 23 May 2007 (has links)
In recent years, cognitive radios and cognitive wireless networks have been introduced as a new paradigm for enabling much higher spectrum utilization, providing more reliable and personal radio services, reducing harmful interference, and facilitating the interoperability or convergence of different wireless communication networks. Cognitive radios are goal-oriented, autonomously learn from experience and adapt to changing operating conditions. Cognitive radios have the potential to drive the next generation of radio devices and wireless communication system design and to enable a variety of niche applications in demanding environments, such as spectrum-sharing networks, public safety, natural disasters, civil emergencies, and military operations. This research first introduces an innovative approach to developing cognitive radios based on the Radio Environment Map (REM). The REM can be viewed as an integrated database that provides multi-domain environmental information and prior knowledge for cognitive radios, such as the geographical features, available services and networks, spectral regulations, locations and activities of neighboring radios, policies of the users and/or service providers, and past experience. The REM, serving as a vehicle of network support to cognitive radios, can be exploited by the cognitive engine for most cognitive functionalities, such as situation awareness, reasoning, learning, planning, and decision support. This research examines the role of the REM in cognitive radio development from a network point of view, and focuses on addressing three specific issues about the REM: how to design and populate the REM; how to exploit the REM with the cognitive engine algorithms; and how to evaluate the performance of the cognitive radios. Applications of the REM to wireless local area networks (WLAN) and wireless regional area networks (WRAN) are investigated, especially from the perspectives of interference management and radio resource management, which illustrate the significance of cognitive radios to the evolution of wireless communications and the revolution in spectral regulation. Network architecture for REM-enabled cognitive radios and framework for REM-enabled situation-aware cognitive engine learning algorithms have been proposed and formalized. As an example, the REM, including the data model and basic application programmer interfaces (API) to the cognitive engine, has been developed for cognitive WRAN systems. Furthermore, REM-enabled cognitive cooperative learning (REM-CCL) and REM-enabled case- and knowledge-based learning algorithms (REM-CKL) have been proposed and validated with link-level or network-level simulations and a WRAN base station cognitive engine testbed. Simulation results demonstrate that the WRAN CE can adapt orders of magnitude faster when using the REM-CKL than when using the genetic algorithms and achieve near-optimal global utility by leveraging the REM-CKL and a local search. Simulation results also suggest that exploiting the Global REM information can considerably improve the performance of both primary and secondary users and mitigate the hidden node (or hidden receiver) problem. REM dissemination schemes and the resulting overhead have been investigated and analyzed under various network scenarios. By extending the optimized link state routing protocol, the overhead of REM dissemination in wireless ad hoc networks via multipoint relays can be significantly reduced by orders of magnitude as compared to plain flooding. Performance metrics for various cognitive radio applications are also proposed. REM-based scenario-driven testing (REM-SDT) has been proposed and employed to evaluate the performances of the cognitive engine and cognitive wireless networks. This research shows that REM is a viable, cost-efficient approach to developing cognitive radios and cognitive wireless networks with significant potential in various applications. Future research recommendations are provided in the conclusion. / Ph. D.
7

Modeling and analysis of customer premise equipments registration process in IEEE 802.22 WRAN cell

Afzal, Humaira, Awan, Irfan U., Mufti, Muhammad R., Sheriff, Ray E. 30 July 2014 (has links)
No / The development of the IEEE 802.22 standard is aimed at providing broadband access in rural areas by effectively utilizing the unused TV band, provided no harmful interference is caused to the incumbent operation. The motivation behind TV band selection is of having lower frequencies compared to other licensed bands, which, therefore, results in lower propagation path loss. Due to this quality, the spectral power density of the radio signal reduces slowly, which results in a high coverage area. Further, it has been observed that many TV channels largely remain unoccupied, as most households and businesses rely on cable and satellite TV services. This is the first international standard for a wireless regional area network (WRAN) based on cognitive radio technologies. This standard provides both PHY and MAC layer functionalities in an infrastructure based network for communication between customer premise equipments (CPEs) through a base station (BS). The Spectrum Manager is the central part of the BS, which plays a significant role in maintaining spectrum availability information, channel selection, channel management, scheduling quiet periods for spectrum sensing, accessing to the database and implementing IEEE 802.22 policies. A WRAN can particularly accommodate up to 512 CPEs in a cell. Contention may occur during initial ranging, periodic ranging, bandwidth request and urgent coexistence situation notification. The medium access control (MAC) incorporates several schemes to control contention between CPEs within a cell and overlapping cells sharing the same channel. A CPE has to make decision to resolve collisions in the upstream direction. In the case of initial ranging and periodic ranging, code division multiple access (CDMA) is employed to resolve collisions. For bandwidth and UCS notification, either a CDMA or exponential time backoff approach can be applied for collision resolution. This paper presents the analytical framework to evaluate the number of active CPEs in a cognitive radio network, It is important to note that when the arrival rate becomes equal to the service rate, the active CPEs curve attains a constant value. Further, the active CPEs length is highly dependent on service rate. The different special cases have been addressed and the effectiveness of the proposed framework has been validated through various evaluation results.
8

Modelling and analysis of dynamic spectrum sharing in cognitive radio based wireless regional area networks : modelling and performance evaluation of initialization and network association of customer premise equipments with the base station in cognitive radio based IEEE 802.22 wireless regional area networks

Afzal, Humaira January 2014 (has links)
The development of the IEEE 802.22 standard is aimed at providing broadband access in rural areas by effectively utilizing the unused TV band, provided no harmful interference is caused to the incumbent operation. This thesis presents the analytical framework to evaluate the number of active customer premise equipments (CPEs) in a wireless regional area network. Initial ranging is the primary process in IEEE 802.22 networks for CPEs to access the network and establish their connections with the base station (BS). A comprehensive analysis of initial ranging mechanism is provided in this work and initial ranging request success probability is derived based on the number of contended CPEs and the initial contention window size. Further, the average ranging success delay is derived for the maximum backoff stages. The collision probability is highly dependent on the size of the initial contention window and the number of contended CPEs. To keep it at a specific level, it is necessary for the BS to schedule the required size of the initial contention window to facilitate the maximum number of CPEs to establish their connections with reasonable delay. Therefore, the optimized initial window size is proposed that meets the collision probability constraint for a particular number of contended CPEs. An analytical model is also developed to estimate the ranging request collision probability depending upon the size of initial contention window and the number of contended CPEs. Moreover, this approximation provides the threshold size for contention window to start the initial ranging process in the IEEE 802.22 network.
9

Inductorless balun low-noise amplifier (LNA) for RF wideband application to IEEE 802.22 / Um amplificador de baixo ruído banda larga, sem indutor, com alta linearidade e 24 dB de ganho para a banda do padrão IEEE 802.22

Costa, Arthur Liraneto Torres January 2014 (has links)
Um novo circuito amplificador de 50 MHz - 1 GHz com alta linearidade para o padrão IEEE 802.22 “wireless regional area” (WRAN) é apresentado. Ele foi implementado sem nenhum indutor e oferece uma saída diferencial para ser utilizada como balun. Técnicas de cancelamento de ruído e aumento de linearidade foram usadas para melhorar a performace do amplificador de modo que eles pudessem ser otimizados separadamente. A linearidade foi melhorada utilizando transistores conectados como diodo. O amplificador foi implementado em um processo CMOS 130 nm, em uma área compacta de 136 m x 71 m. As simulações são apresentadas para esquemáticos pós-leiaute para duas classes diferentes de projeto: um visando a melhor linearidade e o outro a melhor Figura de Ruído (FR). Quando otimizado para melhor linearidade, os resultados de simulação atingem um ganho de tensão > 23.7 dB (ganho de potência > 19.1 dB), uma figura de ruído < 3.6 dB na banda inteira (com 2.4 dB min), um ponto de intersecção de terceira ordem (IIP3) > 3.3 dBm (7.6 dBm max) e um coeficiente de reflexão de entrada S11 < -16 dB. Quando otimizado para melhor figura de ruído, ele atinge um ganho de tensão > 24.7 dB (ganho de potência > 19.8 dB), uma FR < 2 dB na banda inteira, um IIP3 > -0.3 dBm e um S11 < -11 dB. Resultados de simulação Monte Carlo confirmam baixa sensibilidade à variabilidade de processo. Além disso, uma baixa sensibilidade com a temperatura na faixa de -55 até 125 C foi observada para Ganho, FR e S11. Consumo de potência é 17.6 mA sob fonte de alimentação de 1.2 V. / A new 50 MHz - 1 GHz low-noise amplifier circuit with high linearity for IEEE 802.22 wireless regional area network (WRAN) is presented. It was implemented without any inductor and offers a differential output for balun use. Noise cancelling and linearity boosting techniques were used to improve the amplifier performance in a way they can be separately optimized. Linearity was improved using diode-connected transistors. The amplifier was implemented in a 130 nm CMOS process in a compact 136 m x 71 m area. Simulations are presented for post-layout schematics for two classes of design: one for best linearity, another for best noise figure (NF). When optimized for best linearity, simulation results achieve a voltage gain > 23.7 dB (power gain > 19.1 dB), a NF < 3.6 dB over the entire band (with 2.4 dB min figure), an input third-order intercept point (IIP3) > 3.3 dBm (7.6 dBm max.) and an input power reflection coefficient S11 < -16 dB. When optimized for best NF, it achieves a voltage gain > 24.7 dB (power gain > 19.8 dB), a NF < 2 dB over the entire band, an IIP3 > -0.3 dBm and an S11 < -11 dB. Monte Carlo simulation results confirm low sensitivity to process variations. Also a low sensitivity to temperature within the range -55 to 125 C was observed for Gain, NF and S11. Power consumption is 17.6 mA under a 1.2 V supply.
10

Inductorless balun low-noise amplifier (LNA) for RF wideband application to IEEE 802.22 / Um amplificador de baixo ruído banda larga, sem indutor, com alta linearidade e 24 dB de ganho para a banda do padrão IEEE 802.22

Costa, Arthur Liraneto Torres January 2014 (has links)
Um novo circuito amplificador de 50 MHz - 1 GHz com alta linearidade para o padrão IEEE 802.22 “wireless regional area” (WRAN) é apresentado. Ele foi implementado sem nenhum indutor e oferece uma saída diferencial para ser utilizada como balun. Técnicas de cancelamento de ruído e aumento de linearidade foram usadas para melhorar a performace do amplificador de modo que eles pudessem ser otimizados separadamente. A linearidade foi melhorada utilizando transistores conectados como diodo. O amplificador foi implementado em um processo CMOS 130 nm, em uma área compacta de 136 m x 71 m. As simulações são apresentadas para esquemáticos pós-leiaute para duas classes diferentes de projeto: um visando a melhor linearidade e o outro a melhor Figura de Ruído (FR). Quando otimizado para melhor linearidade, os resultados de simulação atingem um ganho de tensão > 23.7 dB (ganho de potência > 19.1 dB), uma figura de ruído < 3.6 dB na banda inteira (com 2.4 dB min), um ponto de intersecção de terceira ordem (IIP3) > 3.3 dBm (7.6 dBm max) e um coeficiente de reflexão de entrada S11 < -16 dB. Quando otimizado para melhor figura de ruído, ele atinge um ganho de tensão > 24.7 dB (ganho de potência > 19.8 dB), uma FR < 2 dB na banda inteira, um IIP3 > -0.3 dBm e um S11 < -11 dB. Resultados de simulação Monte Carlo confirmam baixa sensibilidade à variabilidade de processo. Além disso, uma baixa sensibilidade com a temperatura na faixa de -55 até 125 C foi observada para Ganho, FR e S11. Consumo de potência é 17.6 mA sob fonte de alimentação de 1.2 V. / A new 50 MHz - 1 GHz low-noise amplifier circuit with high linearity for IEEE 802.22 wireless regional area network (WRAN) is presented. It was implemented without any inductor and offers a differential output for balun use. Noise cancelling and linearity boosting techniques were used to improve the amplifier performance in a way they can be separately optimized. Linearity was improved using diode-connected transistors. The amplifier was implemented in a 130 nm CMOS process in a compact 136 m x 71 m area. Simulations are presented for post-layout schematics for two classes of design: one for best linearity, another for best noise figure (NF). When optimized for best linearity, simulation results achieve a voltage gain > 23.7 dB (power gain > 19.1 dB), a NF < 3.6 dB over the entire band (with 2.4 dB min figure), an input third-order intercept point (IIP3) > 3.3 dBm (7.6 dBm max.) and an input power reflection coefficient S11 < -16 dB. When optimized for best NF, it achieves a voltage gain > 24.7 dB (power gain > 19.8 dB), a NF < 2 dB over the entire band, an IIP3 > -0.3 dBm and an S11 < -11 dB. Monte Carlo simulation results confirm low sensitivity to process variations. Also a low sensitivity to temperature within the range -55 to 125 C was observed for Gain, NF and S11. Power consumption is 17.6 mA under a 1.2 V supply.

Page generated in 0.0248 seconds