11 |
Role of pineal gland and melatonin in the development of scoliosisCheung, M. C., Kenneth, January 2007 (has links)
Thesis (M. D.)--University of Hong Kong, 2007. / Also available in print.
|
12 |
Pineal gland function during the reproductive cycle : a multispecies study.Kennaway, D. J. January 1978 (has links) (PDF)
Thesis (Ph.D.) -- University of Adelaide, Dept. of Obstetrics and Gynaecology, 1979.
|
13 |
The regulation of insulin secretion by the pineal glandGorray, Kenneth C. January 1978 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 168-183).
|
14 |
Over de ontwikkeling, de determinatie en de betekenis van de epiphyse en de paraphyse van de amphibiënKamer, Johan Cornelis van de. January 1900 (has links)
Proefschrift - Utrecht / Summary in English.
|
15 |
Effect of anticonvulsant agents on pineal gland indole metabolismMorton, Dougal John January 1983 (has links)
Preface: The general indications that the pineal gland might be involved in homeostasis, and more specifically the evidence suggesting a role in amelioration of seizure states warranted further investigation . No reports had examined a possible link between anticonvulsant drug administration and pineal gland function, and few enabled any type of presumption to be made as to possible effects. This study was an attempt to evaluate in which ways anticonvulsant drugs might alter pineal gland indole metabolism, with a view to increasing understanding of the role of the pineal in modulation of epileptic discharges. In order to make the study as meaningful as possible extensive preliminary investigations were necessary. Pharmacokinetic determinations gave an indication of tissue concentrations of the drugs, which could then be related to observed effects. As far as possible, where existing information was lacking, the catalytic behaviour of the various enzymes was characterised in order to explain any observed effects at a molecular level. An attempt was also made to characterise the regulatory mechanisms controlling indole metabolism, again in order to define the pharmacological effects exerted by the drugs used. The complexity of the system made it impossible to suggest a single uniform regulatory hypothesis, although some significant observations were made. Finally, the studies involving the anticonvulsant drugs were conducted on intact animals, isolated organs and individual enzymes in an attempt to determine whether the observed effects were occuring at a molecular, local or central level.
|
16 |
Caracterização dos receptores tipo Toll em glândulas pineais de rato e sua implicação no entendimento do eixo imune-pineal / Characteristics of toll-like receptors in rat pineal glands the and involvement in the understanding of the immune-pineal axisSanseray da Silveira Cruz Machado 23 January 2015 (has links)
A glândula pineal regula diversos ritmos biológicos e respostas de defesa em indivíduos hígidos através da síntese noturna de melatonina. Por outro lado, é sabido que processos inflamatórios reduzem a produção deste hormônio na glândula pineal. Neste estudo utilizamos um arranjo de qPCR para investigar a expressão circadiana de 84 genes relacionados a sinalização via receptores do tipo toll e NF-κB em glândulas pineais de rato. Confirmamos ainda, a expressão de 14 proteínas em pinealócitos através de ensaios de imunocitoquímica. Nossos resultados indicam que 70 genes inflamatórios são expressos ritmicamente na glândula pineal de ratos, enquanto 7 não são expressos e outros 7 genes são expressos, mas sem ritmicidade. Grande parte dos genes examinados apresenta padrão de expressão circadiana com maior conteúdo transcricional na fase de claro, atingindo a máxima expressão no final desta fase. Após o apagar das luzes, a expressão destes genes é rapidamente reduzida. Um possível envolvimento do ritmo de glicocorticóides endógeno sobre o padrão dessa expressão gênica foi avaliado através do bloqueio de GR por mifepristona, o que induziu a regulação da expressão de 13 genes e redução do conteúdo plasmático de melatonina no ZT18. Ainda, avaliamos o efeito da ativação dos TLR1, TLR2 e TLR6 sobre a glândula pineal e observamos que zimosan e Pam3CSK4 ativam a via do fator de transcrição NF-κB e bloqueia a síntese de melatonina induzida por noradrenalina in vitro. Por fim, utilizamos o modelo de obseidade induzido por dieta hipercalórica para avaliar se o processo inflamatório de baixa intensidade regula a síntede se melatonina in vivo. Observamos que nestas condições, a dieta hipercalórica induz rápido aumento no peso corporal e redução da produção noturna de melatonina. O efeito protetor da melatonina sobre o ganho de peso induzido por dieta foi testado através da restauração da melatonina na água de beber noturna de animais expostos à dieta. Em conjunto, nossos resultados indicam que genes inflamatórios são expressos ritmicamente na glândula pineal de ratos e influenciam a produção circadiana de melatonina via reconhecimento de padrões moleculares associados à patógenos ou sinais de perigo / The pineal gland regulates several circadian rhythms as well as immune responses in healthy animals via rhythmic production of melatonin, the hormone of darkness. On the other hand, nocturnal melatonin levels are reduced in the course of inflammation. To date, it remains to be clear the mechanisms by which the immune system affects pineal melatonin synthesis. Here we used a qPCR array profiler to investigate circadian gene expression of 84 genes related to Toll-Like Receptors and Nuclear Factor kappa B signaling. We also examined the expression of 14 proteins in pinealocytes by immunocytochemistry. Our results indicate rhythmic expression of 70 inflammatory genes, while 7 genes were not expressed and 7 were expressed without rhythmicity. The overall majority of genes tested showed a pattern of expression with a cumulative diurnal increase that peaks at the light phase of ZT12 followed by a fast reduction in the expression as soon as the light is turned off. The possible involvement of endogenous glucocorticoid rhythm in the modulation of pineal\'s inflammatory gene expression were tested by blocking Glucocorticoid Receptor (GR) using mifepristone. This procedure modulated the expression of 13 genes. In addition, the blockade of GR reduced the circulating melatonin levels at ZT18. The activation of TLR1, TLR2 and TLR6 induces the nuclear translocation of NF-κB signaling and blocks noradrenaline-induced melatonin synthesis in vitro. In addition, high-fat diet feeding increases body weight and reduce the circulating melatonin levels at ZT18. The protective role of melatonin in diet-induced weight gain was also determined by giving these rats melatonin in their drinking water at night. Altogether, our results highlight that inflammatory genes are transiently expressed in the rat pineal gland and influences the daily fluctuation of melatonin synthesis
|
17 |
The pineal gland as a model to elucidate the primary mode of action of sympathoactive agentsWelman, Alan David January 1991 (has links)
An attempt was made to use the pineal gland as a model for the study of the primary mode of action of sympathoactive agents. Two drugs were investigated, viz. alpha-methyldopa and ephedrine whose mode of action is not entirely clear. Organ cultures of pineal glands from rats treated chronically with alpha-methyldopa showed enhanced conversion of radioactive serotonin to melatonin (aMT) , as well as its precursor Nacetylserotonin (aHT). This treatment was also found to raise Nacetyltransferase (NAT) activity. These increases associated with alpha-methyldopa treatment were further enhanced by the beta-adrenergic agonist, isoproterenol, suggesting a supersensitivity-type effect occurring at the level of the beta-receptor. A subsequent binding study, however, showed a decrease in beta-receptor binding with exposure to alpha-methyldopa, providing mitigating evidence against the occurrence of a supersensitivity phenomenon. It is possible that a metabolite of alpha-methyldopa acts as an alpha 1 and beta-adrenergic agonist, resulting in greater melatonin (aMT) and N-acetylserotonin (aHT) synthesis than by a beta-adrenergic agonist, isoproterenol. Combined treatment of pineals with alpha-methyldopa and an alphareceptor blocker, phentolamine, resulted in melatonin (aMT) , Nacetylserotonin (aHT) , and N-acetyltransferase (NAT) activity levels which were lower than those obtained with alpha-methyldopa treatment alone, thus confirming the alpha-adrenergic activity of the metabolite of alpha-methyldopa. Additional pineal metabolites were isolated and measured simultaneously in the organ culture experiments. Organ cultures of rat pineal glands treated with ephedrine showed raised levels of melatonin (aMT) and N-acetylserotonin (aHT). Treatment with ephedrine also produced raised N-acetyltransferase activity. A further enhancement of these parameters was induced by norepinephrine, suggesting a supersensitivity-type effect occurring at the level of the beta-adrenergic receptor. Rats were treated with reserpine (a norepinephrine depleter) and the pineals exposed to ephedrine. Endogenous norepinephrine normally released by the action of ephedrine was thus absent, and under these conditions, levels of melatonin (aMT) and N-acetylserotonin (aHT) were reduced. N-acetyltransferase (NAT) activity was also reduced, but maintained levels pointing to substantial adrenergic activity of ephedrine as well as norepinephrine released by virtue of the drug's action. A subsequent binding study showed a decrease in beta-adrenergic receptor binding with exposure to ephedrine and a further decrease in ephedrine treated pineals from reserpine treated rats, thus ruling out the occurrence of a supersensitivity phenomenon. It is possible that both ephedrine and released norepinephrine have alpha- and beta-receptor activity. Additional pineal metabolites were isolated and measured in the organ culture experiments. A 16-hour time profile of the production of melatonin (aMT) and N-acetylserotonin (aHT) with norepinephrine and ephedrine treatment provided useful information regarding the course of action of the two agents. A pineal cell-culture system was developed and exposed to ephedrine and norepinephrine. N-acetyltransferase (NAT) activity levels measured after exposure to these agents were raised, confirming the adrenergic activity of both in the model. Finally, an HPLC system coupled to a UV detector was used in an attempt to measure melatonin (aMT) extracted from pineal organ culture media. The results showed that melatonin could be measured by this method, however, a more sensitive detection system was recommended for future work
|
18 |
The pineal gland as a model to elucidate the primary mode of action of sympathoactive agentsWelman, Alan David January 1991 (has links)
An attempt was made to use the pineal gland as a model for the study of the primary mode of action of sympathoactive agents. Two drugs were investigated, viz. alpha-methyldopa and ephedrine whose mode of action is not entirely clear. Organ cultures of pineal glands from rats treated chronically with alpha-methyldopa showed enhanced conversion of radioactive serotonin to melatonin (aMT) , as well as its precursor Nacetylserotonin (aHT). This treatment was also found to raise Nacetyltransferase (NAT) activity. These increases associated with alpha-methyldopa treatment were further enhanced by the beta-adrenergic agonist, isoproterenol, suggesting a supersensitivity-type effect occurring at the level of the beta-receptor. A subsequent binding study, however, showed a decrease in beta-receptor binding with exposure to alpha-methyldopa, providing mitigating evidence against the occurrence of a supersensitivity phenomenon. It is possible that a metabolite of alpha-methyldopa acts as an alpha 1 and beta-adrenergic agonist, resulting in greater melatonin (aMT) and N-acetylserotonin (aHT) synthesis than by a beta-adrenergic agonist, isoproterenol. Combined treatment of pineals with alpha-methyldopa and an alphareceptor blocker, phentolamine, resulted in melatonin (aMT) , Nacetylserotonin (aHT) , and N-acetyltransferase (NAT) activity levels which were lower than those obtained with alpha-methyldopa treatment alone, thus confirming the alpha-adrenergic activity of the metabolite of alpha-methyldopa. Additional pineal metabolites were isolated and measured simultaneously in the organ culture experiments. Organ cultures of rat pineal glands treated with ephedrine showed raised levels of melatonin (aMT) and N-acetylserotonin (aHT). Treatment with ephedrine also produced raised N-acetyltransferase activity. A further enhancement of these parameters was induced by norepinephrine, suggesting a supersensitivity-type effect occurring at the level of the beta-adrenergic receptor. Rats were treated with reserpine (a norepinephrine depleter) and the pineals exposed to ephedrine. Endogenous norepinephrine normally released by the action of ephedrine was thus absent, and under these conditions, levels of melatonin (aMT) and N-acetylserotonin (aHT) were reduced. N-acetyltransferase (NAT) activity was also reduced, but maintained levels pointing to substantial adrenergic activity of ephedrine as well as norepinephrine released by virtue of the drug's action. A subsequent binding study showed a decrease in beta-adrenergic receptor binding with exposure to ephedrine and a further decrease in ephedrine treated pineals from reserpine treated rats, thus ruling out the occurrence of a supersensitivity phenomenon. It is possible that both ephedrine and released norepinephrine have alpha- and beta-receptor activity. Additional pineal metabolites were isolated and measured in the organ culture experiments. A 16-hour time profile of the production of melatonin (aMT) and N-acetylserotonin (aHT) with norepinephrine and ephedrine treatment provided useful information regarding the course of action of the two agents. A pineal cell-culture system was developed and exposed to ephedrine and norepinephrine. N-acetyltransferase (NAT) activity levels measured after exposure to these agents were raised, confirming the adrenergic activity of both in the model. Finally, an HPLC system coupled to a UV detector was used in an attempt to measure melatonin (aMT) extracted from pineal organ culture media. The results showed that melatonin could be measured by this method, however, a more sensitive detection system was recommended for future work.
|
19 |
An investigation into the anxiolytic properties of melatonin in humansMcCallaghan, Johannes Jacobus January 1999 (has links)
The purpose of this project was to investigate the role of melatonin in the pathophysiology of anxiety in humans. The literature study confirmed the intimate relationship between serotonin and melatonin. Melatonin is not only able to act as an agonist (in physiological concentrations) and an antagonist (at higher concentrations) on serotonin receptors but via control of brain pyridoxal kinase activity might have an effect on GABA, serotonin, dopamine and norepinephrine synthesis. A clinical trial to investigate melatonin's effect on anxiety in humans was conducted as a pilot study. Thirty patients complaining of anxiety participated in a liN of 1" double blind placebo controlled trial. During the experiment each subject was thus exposed to melatonin and a placebo for a week at a time on two occasions. During the first phase of the experiment, (Pair '1) patients showed a statistically significant reduction in their anxiety levels during the first period (P1P1), which was not the case during the second period (P1P2). The improvement however continued during the second phase of the experiment (Pair 2) so that there was also a statistically significant improvement during P 2 P 2 (Period 2 / Pair 2) when placebo was administered. It could not conclusively be shown that melatonin was responsible for the improvement in the patients' anxiety. The explanation for these results suggests thelt the improvement was due to a: 1) placebo effect throughout, 2) psychotherapeutic effect due to contact with a clinician, 3) melatonin induced phase shift in the patient's endogenous melatonin response curve, 4) combination of all 3 options. This pilot study lays the groundwork for a much more exhaustive study in which the melatonin of the patients is determined before melatonin is administered, the role of the clinician is clarified and the most appropriate time for melatonin administration is sought .
|
20 |
A histological and histochemical study of the development of the pineal gland of the chick (Gallus domesticus).Campbell, Elizabeth Diane. January 1972 (has links)
No description available.
|
Page generated in 0.028 seconds