• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 564
  • 248
  • 184
  • 31
  • 26
  • 22
  • 19
  • 16
  • 9
  • 7
  • 6
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 1279
  • 254
  • 169
  • 162
  • 158
  • 143
  • 128
  • 123
  • 118
  • 111
  • 109
  • 109
  • 108
  • 95
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Atomistic modelling of perovskite solar cells

Brivio, Federico January 2016 (has links)
This thesis focuses on the study of hybrid perovskites properties for the purposes of photovoltaic applications. During the almost four years PhD project that has lead to this thesis the record photovoltaic efficiency for this technology has in- creased from 10.9% to 22.1%. Such a significant pace of development can be com- pared with few other materials. It is for this reason that hybrid perovsites have at- tracted impressive research efforts. We approached the study of such unique ma- terials using computational ab-initio techniques, and in particular Density Func- tional Theory. We considered different materials, but most of the attention was concentrated on MAPI (CH 3 NH 3 PbI 3 ). The results are divided in three chapters, each exploring a different material prop- erty. The first chapter reports the electronic structure of the material bulk, sur- faces, and other electronic-related properties such as the rotation barrier for the organic component and the Berry phase polarization. The second chapter focuses on the vibrational properties primary employing the harmonic approximation but also extends to the quasi-harmonic approximation. The outcome of these calculations permitted us to calculate theoretical IR and Ra- man spectra which are in good agreement with different experimental measure- ments. The quasi-harmonic approximation was used to calculate temperature dependent properties, such as the Grüneisen parameter, the thermal dependence of heat capacity and the thermal volumetric expansion. The third and last chapter reviews the thermodynamic properties of binary halide compounds. The cobination of ab-initio calculations with the generalised quasi- chemical approximation has allowed to study the stability of mixed composition perovskites. The results certified a set of stable structures that could stand at the base of observed phenomena of photo-degradation of hybrid perovskite based devices. All three chapters have been written to understand the chemical and physical behaviour of hybrid perovskites and to extended and contribute to the under- standing of experimental work.
212

Iridium-based bimetallic alloy catalysts for the ethanol oxidation reaction for fuel cells modeled by density functional theory

Courtois, Julien 25 April 2013 (has links)
Current ethanol oxidation catalysts in direct ethanol fuel cells (typically platinum-based) suffer from low conversion and are susceptible to CO poisoning. Therefore we determined to find viable alternative catalysts for ethanol oxidation based on iridium using density functional theory to model bimetallic alloy (111) surfaces. Iridium was alloyed with another transition metals M in an overlayer (one layer of metal M on top of bulk iridium) or subsurface configuration (M is inserted under the first layer of iridium). Complete oxidation of ethanol is limited by the breaking of strong C-C bonds, so any catalyst must lower the barriers for C-C bond breaking. We modeled the reaction CH+CO →CHCO.Segregation energies were calculated and the subsurface configuration was the most stable configuration in the vast majority of alloy cases. CO adsorption was also studied and a lower CO adsorption energy was found in many alloy cases compared to pure Pt (, providing encouraging results about the possibility of reducing CO poisoning. Activation energies were lowered for the vast majority of the alloys used in an underlayer structure, reinforcing our interest in the underlayer structures or “subsurfaceâ€� alloys. Finally, we found, based on the CO adsorption energies, activation energies of the C-C breakage reaction, and metal cost, three important catalyst descriptors, a number of promising catalysts for the ethanol oxidation reaction. The most interesting alloys all adopted the underlayer structure Ir/M/Ir. With M = Ta, Hf, Nb, V, Zr, they demonstrated enhanced reactivity and high CO tolerance, having the advantage of reducing the cost of the catalyst, potentially substituting expensive platinum group metals by more affordable components.
213

Estudo teórico-experimental de semicondutores com aplicações em células fotoeletroquímicas

Zapata, Maximiliano Jesús Moreno January 2017 (has links)
Neste trabalho, estudou-se a síntese de filmes finos de BiVO4 e WO3-CuWO4 por spin coating e sputtering, respectivamente. Esses filmes foram utilizados na foto produção de corrente e hidrogênio a partir da água e luz solar (fotoeletrólise). Adicionalmente, foi preparado utilizando a reação de estado sólido o composto quaternario proposto teóricamente por Pranab Sarker como um promisor fotocatalizador para produção de hidrogênio. Finalmente, foi aplicada a teoria do funcional da densidade ao estudo das propriedades eletronicas e estruturais do e dos sistemas citados acima. / In this work, the synthesis of thin films of BiVO4 and WO3-CuWO4 by spin coating and sputtering, respectively, was studied. These films were used in the photo production of current and hydrogen from water and sunlight (photoelectrolysis). Additionally, the quaternary compound proposed theoretically by Sarker Pranab was prepared using the solid state reaction as a photocatalytic suitable for the production of hydrogen. Finally, the density functional theory was applied to the study of the electronic and structural properties of and the systems mentioned above.
214

Propriedades eletrônicas de sistemas conjugados: importância da troca exata / Electronic properties of conjugated systems role of exact exchange

Pinheiro Junior, José Maximiano Fernandes 02 June 2014 (has links)
Polímeros conjugados semicondutores tem atraído grande interesse nas últimas décadas devido às possíveis aplicações como componentes ativos em aplicações optoeletrônicas. A adequação destes semicondutores orgânicos para a fabricação de dispositivos depende do entendimento e controle de propriedades eletrônicas básicas: gap fundamental (Eg) e potencial de ionização (IP). Nesse contexto, estudos teóricos baseados em cálculos de primeiros princípios tem se mostrado muito úteis, uma vez que possibilitam a simulação de processos físicos em condições ideais, onde se pode analisar as propriedades eletrônicas de polímeros desconsiderando efeitos do ambiente ou desordem estrutural. A Teoria do Funcional da Densidade (DFT) tem se tornado o método mais comum para o cálculo da estrutura eletrônica do estado fundamental de uma ampla variedade de materiais orgânicos complexos. Embora cálculos DFT baseados na diferença de energias totais tem sido aplicados com sucesso para estimar IPs de moléculas pequenas, este método falha nas propriedades de sistemas conjugados longos. Realmente, a capacidade preditiva da DFT padrão com respeito as propriedades espectroscópicas é frequentemente limitada, entretanto o tratamento adequado das excitações eletrônicas através de abordagens de muitos corpos é ainda muito difícil para materiais orgânicos complexos. Funcionais híbridos que misturam uma fração () de troca exata (EX) não-local ao correspondente semi-local representam uma boa alternativa, embora a quantidade ideal de EX seja, em geral, dependente do sistema. Neste trabalho, adotamos um esquema não-empírico baseado na aproximação G0W0 para identificar o valor ótimo de para o funcional híbrido PBE no qual a correção de autoenergia para o orbital mais alto ocupado (HOMO) de Kohn-Sham generalisado é minimizado. Estudamos, com base nessa estratégia, a dependência com o comprimento das propriedades eletrônicas básicas em uma família de oligômeros conjugados 1D de trans-poliacetileno (TPA). Nossos cálculos mostram que a fração EX ótima (dependente do tamanho) incorporada ao PBEh reproduz com precisão os IPs experimentais determinados em fase gasosa, / Semiconducting conjugated polymers have attracted considerable interest over the past decades due to the promising applications as active components for optoelectronic applications. The suitability of such organic semiconductors for device fabrication relies on quantitative understanding and control of basic electronic properties: fundamental gap (Eg) and ionization potential (IP). In this context, theoretical studies based on first principles approaches have proven useful, through simulating physical processes in ideal conditions, in which one might analyse the electronic properties of polymers apart from the effects of the surrounding environment or structural disorder. Density Functional Theory (DFT) has become an usual choice for calculating the ground state electronic structure of a wide variety of complex organic materials. Although DFT calculations based on total energy differences have been successfully applied to estimate IPs of small molecules, they fail for properties of long conjugated systems. Indeed, the predictive ability of standard DFT with respect to spectroscopic properties is often limited, however a proper treatment of the electronic excitations through many-body approaches is still very difficult for complex organic materials. Hybrid functionals that mix a fraction (_) of nonlocal exact exchange (EX) with the semilocal counterpart represent a good alternative, although the ideal amount of EX is usually system dependent. In this work, we adopt a non-empirical scheme based on the G0W0 approximation to identify the optimum _ value for the PBE hybrid functional for which the self-energy correction to the generalized Kohn-Sham highest occupied molecular orbital (HOMO) is minimized. Based on this strategy we study the size dependence of the basic electronic properties in a family of 1D _-conjugated oligomers of trans-polyacetylene (TPA). Our calculations demonstrate that the size dependent optimal EX fraction incorporated in PBEh accurately reproduces IPs from experimental gas phase data, although no particular constraint has been imposed a priori. Furthermore, we note that the optimum _-value decreases exponen tially with chain length going from _ w0.85 for the smaller oligomer (ethylene, n=1) up to _ w0.75 extrapolated for an isolated TPA chain. The accuracy of our optimized PBEh in predicting IPs and Eg is superior to other conventional mean field approaches, as demonstrated for a selected set of conjugated molecules such as acenes and phenylenes. As a result, we can obtain good estimations for the energy barriers of electron transfer in organic/organic interfaces. On the other extreme, we analyse the influence of exact exchange on the electronic structure of the prototypical metal system gold (Au), commonly used as electrode in organic devices. In this case, we confirm the expected result that the insertion of even a small fraction of EX into PBE functional distorts the Au band structure, worsening the description of electronic properties compared to regular PBE. We then proceed to analyse the factibility of studying polymer/metal interface systems using pure DFT. Our calculations reveal that the result is too system-dependent: for the TPA/Au(111) interface, an artificial charge transfer takes place at interface due to an underestimation of the IPs of the conjugated system inherent to the underlying DFT approximation. Finally, our study emphasizes the importance of a physically motivated choice of EX fraction in hybrid functionals for accurately predicting both ionization potentials and fundamental gaps of organic semiconductors relevant for nanoelectronics.
215

Partition Density Functional Theory for Semi-Infinite and Periodic Systems

Kelsie A. Niffenegger (5930087) 03 January 2019 (has links)
<div>Partition Density Functional Theory (P-DFT) is a formally exact method to find the ground-state energy and density of molecules via self-consistent calculations on isolated fragments. It is being used to improve the accuracy of Kohn-Sham DFT (KS-DFT) calculations and to lower their computational cost. Here, the method has been extended to be applicable to semi-infinite and periodic systems. This extension involves the development of new algorithms to calculate the exact partition potential, a central quantity of P-DFT. A novel feature of these algorithms is that they are applicable to systems of constant chemical potential, and not only to systems of constant electron number. We illustrate our method on one-dimensional model systems designed to mimic metal-atom interfaces and atomic chains. From extensive numerical tests on these model systems, we infer that: 1.) The usual derivative discontinuities of open-system KS-DFT are reduced (but do not disappear completely) when an atom is at a nite distance from a metallic reservoir; 2.) In situations where we do not have chemical potential equalization between fragments of a system, a new constraint for P-DFT emerges which relates the fragment chemical potentials and the combined system chemical potential; 3.) P-DFT is an ideal method for studying charge transfer and fragment interactions due to the correct ensemble treatment of fractional electron charges; 4.) Key features of the partition potential at the metalatom interface are correlated to well-known features of the underlying KS potential; and 5.) When there is chemical potential equalization between an atom and a metal surface it is interacting with, there is strong charge transfer between the metal and atom. In these cases of charge transfer the density response to an innitesimal change in the chemical potential is located almost exclusively around the atom. On the other hand, when the fragment chemical potentials do not equalize, the density response only aects the surface Friedel oscillations in the metal.</div>
216

First-principles studies of gas hydrates and clathrates under pressure

Teeratchanan, Pattanasak January 2018 (has links)
Gas hydrates are molecular host-guest mixtures where guest gas species are encapsulated in host water networks. They play an important role in gas storage in aqueous environments at relatively low pressures, and their stabilities are determined by weak interactions of the guest species with their respective host water frameworks. Thus, the size and the amount of the guest species vary, depending on the size of the empty space provided by the host water structures. The systems studied here are noble gas (He, Ne, Ar) and diatomic (H2) hydrates. Because of the similarity of the guests' sizes between the noble gases and the di-atomic gases, the noble gas hydrates act as simple models for the di-atomic gas hydrates. For example, He, Ne and H2 have approximately the same size. Density functional theory calculations are used to obtain the ground state formation enthalpies of each gas hydrate, as a function of host network, guest stoichiometry, and pressure. Dispersion effects are investigated by comparing various dispersion corrections in the exchange-correlation functionals (semi-local PBE, semi-empirical D2 pair correction, and non-local density functionals i.e. vdW-DF family). Results show that the predicted stability ranges of various phases agree qualitatively, although having quantitative difference, irrespective of the methods of the dispersion corrections in the exchange-correlation functionals. Additionally, it is shown in gas-water dimer interaction calculations that all DFT dispersion-corrected functionals overbind significantly than the interaction acquired by the coupled-cluster calculations, at the CCSD(T) level, which is commonly accepted to provide the most accurate estimation of the actual interaction energy. This could lead to an overestimation of the stability of the hydrate mixtures. Further study in the gas-water cluster indicates that less overbinding effect is found in the cluster than in the dimer. This implies that the overbinding energy caused by DFT might become less pronounce in the solid phase. Graph invariant topology and a program based on a graph theory are used to assign protons based on the 'ice rule' to fulfill the incomplete experimental structural data such as unknown/unclear positions of protons in the host water lattices. These methods help constructing host water networks for computational calculations. Several configurations of the host water structures are tested. Those configurations having lowest enthalpies are used as the host water networks in this research. Furthermore, the enthalpic spread between the configurations having the highest and the lowest enthalpy in the pure water ice network is very small (about 10 meV per water molecule). Nevertheless, it is still unclear to conclude that this protonic effect is also trivial in the gas-water compound. Therefore, this study also calculates the enthalpies of the gas-water mixtures having various proton configurations in the host water networks. Results indicate that very small enthalpic distributions among the proton configurations are found in the compounds as well. Furthermore, the enthalpic spread is almost constant as pressure increases. This suggests there is no pressure effect in the enthalpy gap amoung the proton distributions in both pure water ice and the gas-water compounds. Predicted stable phases for the noble gas compound systems are based on four host water networks, namely, ice Ih, II and Ic, and the novel host water network S!. The He-water system adopts ice Ih, II and Ic network upon increasing pressure. In the Ne-water system, a phase sequence of Sx/ice-Ih, II and Ic with a competitive hydrate phase in the S! host network at very low pressure is found. This is similar to the phase evolution of the H2-water system. For the Ar-water mixture, only a partially occupied hydrate in the Sx host network is found stable. This Sx phase becomes metastable if taking the traditional clathrates (sI and sII) into account. This result agrees very well with the experiment suggesting only two-third filling is found the large guest gases i.e. CO2. For the diatomic guest gas compound systems, the traditional clathrate structure (sII) that found to be existed experimentally in the H2-H2O system is also included in this study together with those four host water networks. Predicted phase stability sequence as elevated pressure is as follows: Sx, ice-Ih, II and Ic. This computationally prediction agrees very well with experiment. Results in this work suggest that the compound based on the traditional clathrate structure II (sII) host water framework is found to be metastable with respect to the decomposition constituents - in this case, they are pure water ice and the S!. The metastability of the hydrogen hydrates based on the sII structure might due to zero-point motions or other dynamic/entropic mechanisms uncovered in this research. Dynamic studies concerning the transition states of the hydrogen guest molecules in three competitive phases at very low pressure (less than 10 kbar), based on Sx, ice-Ih, and ice-II host water network, are considered. The energy barriers required by the hydrogen guest molecules in those three host frameworks are calculated by using Nudged Elastic Band (NEB) method. Results suggest that the hydrogen molecules are more mobile in the Sx than the other two host structures significantly. In the S! host water network, the energy barrier is about 25 meV/hydrogen molecule. This energy is about the room temperature suggesting that the hydrogen guest molecules are easily mobile in the Sx host water network if there is an empty site adjacent to them.
217

Investigation into the mode of action of chloride and chloridoplatinate extraction : a computational and experimental study

MacRuary, Kirstian Jennifer January 2017 (has links)
This thesis investigates the mode of action of cationic reagents in the recovery of platinum group metals (PGMs) by anion exchange solvent extraction. Industry uses a range of extractants to achieve efficient concentration and separation of PGMs in hydrometallurgical processes, but an understanding of the processes at a molecular level is limited and restricts the options to improve efficiency. The research, sponsored in part by Johnson Matthey and Anglo American, explores two different aspects of the mode of action of reagents used to recover chloride and platinum. Chapter 1 reviews the extraction of chloridometalates in hydrometallurgy and other methods used to recover PGMs. The chapter also covers current ideas on whether formation of outer-sphere anion-cation molecular assemblies or whether larger supramolecular aggregates are responsible for the extraction of PGMs. These two separate routes of study can be investigated by various computational and experimental methods, which are discussed in Chapter 2. In Chapter 3, the model systems chosen to develop the methodologies utilised throughout the thesis are presented. The development involves the extraction of chloride ions by tributyl-phosphate (TBP) and then is extended to extraction of PGM chloridometalates in Chapter 4. Computational methods are used to probe the atomistic and supramolecular theories in predicting the most likely assemblies which will be formed in the transfer of anions between the aqueous and organic phase. Slope analysis and the determination of the contents of the organic phase is used to validate computational models, along with spectroscopic techniques to determine shape and size of assemblies formed during extraction. The application of these methodologies to an amide extractant is discussed in Chapter 5. Computational methods predict the probability of formation of specific complex assemblies during the extraction of PtCl62- by protonated forms of the amide. Determination of the stoichiometry involved in formation of the complex assemblies by slope analysis is reported along with analysis of water, metal and chloride content to confirm the computational model. Final conclusions on all systems explored within the thesis and suggestions for future work are presented in the final chapter. The combination of experimental and computational methods are shown to be very efficient in defining mechanisms of extraction, involving determination of structures formed during the process and how and why they form.
218

Experimental and theoretical studies of electronic and mechanical properties of two-dimensional (2D) WSe₂

Zhang, Rui January 2018 (has links)
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with intrinsic band gaps are considered to be prospective alternatives for graphene in the applications of emerging nano-semiconductor devices. As a significant member of the TMDs family, WSe₂ with superior optical properties attracts increasing attention, especially in the optoelectronics. In this thesis, the electronic and mechanical properties of 2D WSe₂ have been studied experimentally and theoretically. Firstly, the fabrication of substrate-supported and suspended pre-patterned WSe₂ FETs with the low-cost optical lithography and vapour HF etching technology have been realised. The subsequent electrical measurement of the fabricated WSe₂ FETs indicates that the WSe₂/dielectric interface can affect the electrical performance of 2D WSe₂ negatively. To gain more insights on the impact of field-effect on 2D WSe₂, first-principle calculations have been conducted in this research to study the evolutions of the crystal structure, electronic band structure, conductive channel size, and electrical transport property of WSe2 under various levels of field-effect. Furthermore, a layer thinning and chemical doping method of 2D WSe₂ by vapour XeF₂ exposure featured with good air-stability, scalability, and controllability has been developed to enable the layer engineering of 2D WSe₂ and integration of 2D WSe₂ to logic circuits, solar cells, and light-emitting diodes (LED). The thinning and doping mechanism has been investigated with a combination of Raman spectroscopy, photoluminescence (PL) spectroscopy, and Xray photoelectron spectroscopy (XPS) characterization techniques. Afterwards, the inplane elastic properties (including the Young's modulus, breaking strain, and etc.) of 2D WSe₂ have been measured with nanoindentation experiments implemented by atomic force microscopy (AFM). The results prove the suitability of 2D WSe₂ in the applications of flexible devices and nanoelectromechanical systems (NEMS) operating in the audio resonance frequency, such as acoustic sensors and loudspeakers. To provide a comprehensive understanding of the strain engineering of 2D WSe₂, the strain induced variations of the crystal structure, electronic band structure, and electrical transport property of 2D WSe₂ have been further studied with first-principle calculations, which paves the way for the performance tuning of 2D WSe₂ devices via strain and applications of 2D WSe₂ in strain sensors.
219

Fullerenes in Solar Energy Cells

Griffitts, Fletcher G 01 May 2017 (has links)
This project involves controlling and characterizing the morphology of the active layer in a special type of organic photovoltaics (OPVs), consisting of porphyrin-fullerene composites, with emphasis on electron exchange interactions between the two components. The Vienna Ab Initio Simulation Package (VASP) is applied to model a variety of donor-acceptor complexes containing fullerene and porphyrin in terms of their stabilities as well as their geometric, electronic, and charge transfer features. The goal is to identify supramolecular chain structures with highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) that may serve as electron (hole) transfer channels in a photovoltaic device. A stable structure, involving the planar adsorption of a porphyrin unit on a C60 hexagon, has been identified. The results for fullerene have been extended to phthalocyanine–fullerene dyads where the fullerene-derived unit Phenyl-C61-butyric acid methyl ester (PCBM) is connected to a porphyrin analogous electron donor through two oxygen-linked benzene rings. In both cases, the HOMO is located on the porphyrin segment, the LUMO on the fullerene component. As a fullerene, PCBM is a material of very high electron affinity, but it has better solubility properties than fullerene. It is often used in plastic solar cells or flexible electronics in conjunction with electron donor materials such as P3HT or other polymers. The results of our work contribute to the ongoing effort of using computational modeling to identify fullerene-based materials of potential relevance for organic photovoltaics.
220

Computational Studies on Mechanisms and Reactivity of Mercury and Cobalt Organometallic Reactions

Fuller, Jack Terrell 01 July 2016 (has links)
Density Functional Theory (DFT) is a powerful tool for treating large organometallic structures efficiently and accurately. DFT calculations on the Hg-catalyzed oxidation of methane to methyl bisulfate in sulfuric acid suggest the lowest energy pathway involves a closed-shell electrophilic C–H activation mechanism coupled with metal alkyl reductive functionalization and oxidation by SO3. Comparison to Tl, Zn, and Cd suggests that Hg is unique in its ability to catalyze this set of reaction steps. Comparison to K2S2O8 highlights the selectivity of this C–H activation reaction as opposed to radical conditions. In contrast, DFT calculations indicate that CoIII(TFA)3 oxidizes methane through a radical TFA ligand decarboxylation pathway. A similar decarboxylation pathway is identified for MnIII(TFA)3, but the low spin ground state of TlIII(TFA)3 favors electrophilic C–H activation over this decarboxylation pathway. DFT calculations indicate that Cp(PPh2Me)Co=CF2 undergoes [2 + 2] cycloaddition with TFE by a unique open-shell singlet diradical mechanism. The significant stability of the perfluorometallacyclobutane reveals why catalytic metathesis with TFE is difficult.

Page generated in 0.0271 seconds