Spelling suggestions: "subject:"stabilusis skirstomi"" "subject:"stabilumas skirstomi""
1 |
Stabilieji skirstiniai finansų rinkų modeliavime / Stable distributions in finance markets modelingŠakytė, Edita 16 August 2007 (has links)
Stabilieji skirstiniai yra plati tikimybinių skirstinių klasė. Atsitiktiniai dydžiai, pasiskirstę pagal stabiliuosius skirstinius, pasižymi savybe – jų suma taip pat yra stabili. Šie pasižymi sunkiomis uodegomis ir, kai kuriais atvejais, asimetriškumu. Taigi jie gerai aprašo duomenis. Pagrindinis šių skirstinių trūkumas yra tas, kad nežinomos tikslios pasiskirstymo ir tankio funkcijų išraiškos (išskyrus kelis atvejus: normalusis, Koši ir Levi skirstiniai). Darbo pradžioje pateikta stabiliųjų skirtinių apžvalga bei jų pritaikymas finansų rinkose. Aprašytos pagrindinės stabiliųjų skirstinių savybės, įverčių skaičiavimo algoritmai bei optimalaus portfelio sudarymas ir jo vertės pokyčio rizikos mato (VaR) skaičiavimas. Antroje darbo dalyje nagrinėjamas optimaliojo investicinio portfelio „normalioje“ ir „stabilioje“ rinkoje sudarymas. Rizikos matu laikomas sklaidos parametras (stabiliuoju atveju) arba standartinis nuokrypis, padalintas iš kvaratinės šaknies iš 2, (normaliuoju atveju). Palyginami portfeliai, sudaryti iš septyniolikos lietuviškų akcijų, gauti pagal skirtingas tikimybines prielaidas. Parodyta, kad optimalieji portfeliai skiriasi, kuomet duomenys yra pasiskirstę pagal stabilųjį ir normalųjį skirstinius. / Stable distributions are a rich class of probability distributions that allow skewness and heavy tails. The lack of closed formulas for densities and distribution functions for all distributions (except Gaussian, Cauchy and Levy distributions) is the major drawback. There is an overview of the stable distributions and their applications in finance markets at the beginning of this paper. There are described basic properties of stable distributions, estimation algorithms and optimal asset allocation and stable computation of Value at Risk in the first part of the work. We analyze an investment allocation problems in this work. We consider as the risk measure the estimate of scale parameter (in the stable case) or the expected value of absolute deviation divided by square root of 2 (in Gaussian case). We examine the optimal allocation between seventeen risky assets with normal or stable distributed returns and then we compare the allocation obtained under the Gaussian and stable distributional assumptions. We show that there are differences in the allocation when the data follow the stable non-Gaussian and the normal distribution.
|
2 |
Study and application of methods of fractal processes monitoring in computer networks / Fraktalinių procesų kompiuterių tinkluose stebėsenos ir valdymo metodų tyrimasKaklauskas, Liudvikas 09 August 2012 (has links)
The field of the dissertation research is features of computer network packet traffic, the impact of network node features on traffic service, methods of real-time analysis of network traffic features and their application for dynamic prognostication of computer network packet traffic variance. The object of the research is the features of computer network packet traffic, the impact of network node features on computer network traffic service, methods of real-time network traffic features analysis and their application for dynamic prognostication of network traffic variances.
The aim of work is to investigate fractal processes in computer networks, grounding on the results obtained to select methods suitable for real-time analysis of network traffic and to work out methods for real-time measurement of self-similarity as well as to apply it for perfection of computer networks service quality.
Possibilities for mathematical modelling of network components, computer network packet traffic models and models using service theory instruments have been analysed. The package of network traffic features analysis has been worked out; it was used for analysis, assessment and comparison of methods for computer networks fractality and self-similarity research. For assessment of self-similarity of the network traffic time lines analysis, frequency/wave feature estimates, self-similarity analysis methods based on time line stability parameters estimators and assessed by the chaos theory... [to full text] / Disertacijos tyrimų sritis – kompiuterių tinklo paketinio srauto savybės, tinklo mazgo savybių įtaka srauto aptarnavimui, tinklo srauto savybių realaus laiku analizės metodai ir jų taikymas kompiuterių tinklo srauto kaitos dinaminiam prognozavimui. Tyrimų objektas – kompiuterių tinklo paketinio srauto savybės, tinklo mazgo savybių įtaka paketinio kompiuterių tinklo srauto aptarnavimui, realaus laiko tinklo srauto savybių analizės metodai ir jų taikymas tinklo srauto kaitos dinaminiam prognozavimui. Darbo tikslas – ištirti fraktalinius procesus kompiuterių tinkluose, remiantis gautais rezultatais parinkti metodus, tinkamus tinklo srauto analizei realiu laiku, ir sukurti savastingumo matavimo realiu laiku metodiką bei ją pritaikyti kompiuterių tinklų aptarnavimo kokybei gerinti.
Išanalizuotos tinklo komponentų matematinio modeliavimo galimybės, kompiuterių tinklo paketinio srauto modeliai ir modeliai, naudojantys aptarnavimo teorijos instrumentus. Parengtas tinklo srauto savybių analizės paketas, panaudotas kompiuterių tinklų fraktališkumo ir savastingumo tyrimo metodams analizuoti, vertinti ir palyginti. Ištirti paketinio kompiuterių tinklo srauto laiko eilučių analizės, dažninių/banginių savybių įvertinimo, laiko eilutės stabilumo parametrų įverčiais grindžiami bei chaoso teorijos priemonėmis įvertinami savastingumo analizės metodai.
Sudarytas tinklo srauto savastingumo realiu laiku analizės paketas, kurį naudojant savastingumo matavimui realiu laiku atrinktas robastinis... [toliau žr. visą tekstą]
|
3 |
Markovo grandinės Monte-Karlo metodo tyrimas ir taikymas / Study and application of Markov chain Monte Carlo methodVaičiulytė, Ingrida 09 December 2014 (has links)
Disertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu. / Markov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method.
Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text]
|
4 |
Study and application of Markov chain Monte Carlo method / Markovo grandinės Monte-Karlo metodo tyrimas ir taikymasVaičiulytė, Ingrida 09 December 2014 (has links)
Markov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method.
Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text] / Disertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu.
|
Page generated in 0.0561 seconds