Spelling suggestions: "subject:"AC conductance"" "subject:"AC onductance""
1 |
Condução eletrônica através de um contato quântico pontual / Electronic transport through a quantum point contactCampo Júnior, Vivaldo Leiria 30 April 1999 (has links)
Neste trabalho é apresentado o cálculo, pelo grupo de renormalização numérico, da condutância AC através de uma nanoestrutura acoplada a gases eletrônicos, a baixa temperatura e no regime de resposta linear. Este sistema apresenta a competição entre dois efeitos: blo¬queio Coulombiano e efeito Kondo. Nosso modelo considera gases eletrônicos unidimensionais que são unidos pelas extremidades para formar um anel, no qual a corrente é induzida por um fluxo magnético oscilante com freqüência . Nós partimos de um modelo tight-binding de vizinhos mais próximos para os gases eletrônicos e, deste modo, o potencial vetor é facilmente incorporado ao Hamiltoniano por condições de contorno torsionais. Uma barreira de potencial entre os gases eletrônicos e a nanoestrutura é simulada em termos de uma taxa de tunelamento entre a nanoestrutura e os sítios adjacentes menor que aquela entre entre sítios vizinhos no anel. A capacitância da nanoestrutura é pequena, o que implica que nós podemos considerar mudanças no número de elétrons dentro da mesma por apenas uma unidade. Como conseqüência, o Hamiltoniano é mapeado no Hamiltoniano de Anderson com correlação U entre os elétrons. Uma voltagem de gate controla a energia da impureza (da nanoestrutura), 0. Plotada como função de , a condutância mostra dois picos característicos do bloqueio Coulombiano, em freqüências correspondentes às energias para adicionar um elétron à nanoestrutura e para remover um elétron da nanoestrutura respectivamente. No regime Kondo, 0 > 0 > -U (ou seja, para voltagens de gate tais que a nanoestrutura isolada teria estado fundamental com degenerescência de spin), um pico (Kondo) adicional aparece próximo à = 0. Plotada como função de Vg, a condutância DC mostra um largo pico no regime Kondo, caindo rapidamente a zero para voltagens resultando em um estado fundamental não degenerado para a nanoestrutura isolada. Uma relação entre a condutância e a densidade espectral do nível da impureza é obtida e utilizada para interpretar os resultados numéricos. / In this work a renormalization-group calculation of the low-temperature AC conductance in the linear response regime through a nanostructure coupled to metallic leads is presented. This system shows a competition between two effects: the Coulomb blockade and the Kon¬do effect. Our model considers one-dimensional leads which are connected to form a ring, in which a current is induced by a magnetic flux oscillating at the frequency . We start from a nearest-neighbor tight-binding model for the leads and in this way the potential vector is easily incorporated in the model Hamiltonian by twisting boundary conditions. A potential barrier between the leads and the nanostructure is simulated in terms of a tunneling rate between the nanostructure and the adjacent sites in the leads, which is smaller than the one between neighbors sites in the leads. The capacity of the nanostructure is small, which implies that substantial energy changes are associated with each electron transfered to the nanostructure. As a consequence, the model Hamiltonian maps onto the spin-degenerate Anderson Hamiltoni¬an with correlation U between the electrons. A gate voltage Vg controls the impurity (i.e., nanostructure) energy 0. Plotted as a function of , the conductivity shows two Coulomb-blockade peaks, at the energy needed to add an electron to and to remove an electron from the nanostructure, respectively. In the Kondo regime 0 > 0 > -U (i.e., for gate voltages such that the isolated nanostructure would have a spin-degeneration ground state), an addition (Kondo) peak appears near = 0. Plotted as functions of Vg, the static conductivity shows a broad peak in the Kondo regime and drops rapidly to zero for voltages resulting in a non-degenerate nanostructure ground state. A relation between the conductance and the spectral density of the impurity is obtained and used to interpret the numerical results.
|
2 |
Condução eletrônica através de um contato quântico pontual / Electronic transport through a quantum point contactVivaldo Leiria Campo Júnior 30 April 1999 (has links)
Neste trabalho é apresentado o cálculo, pelo grupo de renormalização numérico, da condutância AC através de uma nanoestrutura acoplada a gases eletrônicos, a baixa temperatura e no regime de resposta linear. Este sistema apresenta a competição entre dois efeitos: blo¬queio Coulombiano e efeito Kondo. Nosso modelo considera gases eletrônicos unidimensionais que são unidos pelas extremidades para formar um anel, no qual a corrente é induzida por um fluxo magnético oscilante com freqüência . Nós partimos de um modelo tight-binding de vizinhos mais próximos para os gases eletrônicos e, deste modo, o potencial vetor é facilmente incorporado ao Hamiltoniano por condições de contorno torsionais. Uma barreira de potencial entre os gases eletrônicos e a nanoestrutura é simulada em termos de uma taxa de tunelamento entre a nanoestrutura e os sítios adjacentes menor que aquela entre entre sítios vizinhos no anel. A capacitância da nanoestrutura é pequena, o que implica que nós podemos considerar mudanças no número de elétrons dentro da mesma por apenas uma unidade. Como conseqüência, o Hamiltoniano é mapeado no Hamiltoniano de Anderson com correlação U entre os elétrons. Uma voltagem de gate controla a energia da impureza (da nanoestrutura), 0. Plotada como função de , a condutância mostra dois picos característicos do bloqueio Coulombiano, em freqüências correspondentes às energias para adicionar um elétron à nanoestrutura e para remover um elétron da nanoestrutura respectivamente. No regime Kondo, 0 > 0 > -U (ou seja, para voltagens de gate tais que a nanoestrutura isolada teria estado fundamental com degenerescência de spin), um pico (Kondo) adicional aparece próximo à = 0. Plotada como função de Vg, a condutância DC mostra um largo pico no regime Kondo, caindo rapidamente a zero para voltagens resultando em um estado fundamental não degenerado para a nanoestrutura isolada. Uma relação entre a condutância e a densidade espectral do nível da impureza é obtida e utilizada para interpretar os resultados numéricos. / In this work a renormalization-group calculation of the low-temperature AC conductance in the linear response regime through a nanostructure coupled to metallic leads is presented. This system shows a competition between two effects: the Coulomb blockade and the Kon¬do effect. Our model considers one-dimensional leads which are connected to form a ring, in which a current is induced by a magnetic flux oscillating at the frequency . We start from a nearest-neighbor tight-binding model for the leads and in this way the potential vector is easily incorporated in the model Hamiltonian by twisting boundary conditions. A potential barrier between the leads and the nanostructure is simulated in terms of a tunneling rate between the nanostructure and the adjacent sites in the leads, which is smaller than the one between neighbors sites in the leads. The capacity of the nanostructure is small, which implies that substantial energy changes are associated with each electron transfered to the nanostructure. As a consequence, the model Hamiltonian maps onto the spin-degenerate Anderson Hamiltoni¬an with correlation U between the electrons. A gate voltage Vg controls the impurity (i.e., nanostructure) energy 0. Plotted as a function of , the conductivity shows two Coulomb-blockade peaks, at the energy needed to add an electron to and to remove an electron from the nanostructure, respectively. In the Kondo regime 0 > 0 > -U (i.e., for gate voltages such that the isolated nanostructure would have a spin-degeneration ground state), an addition (Kondo) peak appears near = 0. Plotted as functions of Vg, the static conductivity shows a broad peak in the Kondo regime and drops rapidly to zero for voltages resulting in a non-degenerate nanostructure ground state. A relation between the conductance and the spectral density of the impurity is obtained and used to interpret the numerical results.
|
3 |
Deuterium Isotope Effects on the Limiting Molar Conductivities of Strong Aqueous Electrolytes from 25 °C to 325 °C at 20 MPaPlumridge, Jeffrey 02 January 2014 (has links)
State of the art conductivity equipment has been used to measure deuterium isotope effects on the molar conductivity of strong electrolytes in the temperature range of 298 K to 598 K as a means of exploring solvation effects under hydrothermal conditions. Individual ionic contributions were determined by extrapolation of published transference number data to elevated temperature. The temperature dependence of the Walden product ratio indicates that there is little difference in the transport of ions between light and heavy water . Excess conductivity observed in hydrogen and deuterium compounds arising from proton hopping in hydrogen-bonded networks has been determined in the temperature range of 318 K to 598 K for the first
time
|
Page generated in 0.0358 seconds