201 |
The modulating effect of sildenafil on cell viability and on the function of selected pharmacological receptors in cell cultures / B.E. EagarEager, Blenerhassit Edward January 2004 (has links)
Since sildenafil's (Viagra®), a phospodiesterase type 5 (PDE5) inhibitor, approval for the
treatment of male erectile dysfunction (MED) in the United States early 1998, 274
adverse event reports were filed by the Food and Drug Administration (FDA) between 4
Jan. 1998 and 21 Feb. 2001 with sildenafil as the primary suspect of various
neurological disturbances, including amnesia and aggressive behaviour (Milman and
Arnold, 2002). These and other research findings have prompted investigations into the
possible central effects of sildenafil.
The G protein-coupled muscarinic adetylcholine receptors (mAChRs) and serotonergic
receptors (5HT-Rs), have been linked to antidepressant action (Brink et al. 2004).
GPCRs signal through the phosphatidylinositol signal transduction pathway known to
activate protein kinases (PKs). Since the nitric oxide (NO)-guanylyl cyclase signal
transduction pathway is also known to involve the activation of PKs (via cyclic guanosine
monophosphate (cGMP)), the scope is opened for sildenafil to possibly modulate the
action of antidepressants by elevating cGMP levels.
It is generally assumed that excitotoxic delayed cell death is pathologically linked to an
increase in the release of excitatory neurotransmitters e.g. glutamate. Glutamate
antagonists, especially those that block the define NMDA-receptors, are neuroprotective,
showing the importance of the NMDA-NO-cGMP pathway in neuroprotection (Brandt et
al., 2003). Sildenafil may play a role in neuroprotection by elevating cGMP levels.
Aims: The aims of the study were to investigate any neuroprotective properties of
sildenafil, as well as modulating effects of sildenafil pre-treatment on mAChR function.
Methods: Human neuroblastoma SH-SY5Y or human epithelial HeLa cells were seeded
in 24-well plates and pre-treated for 24 hours in serum-free medium with no drug
(control), PDE5 inhibitors sildenafil (100nM and 450 nM), dipiridamole (20 µM) or
zaprinast (20 µM), non-selective PDE inhibitor 3-isobutyl-I-methylxanthine (IBMX -
ImM), cGMP analogue N2,2'-0-dibutyrylguanosine 3'5'-cyclic monophosphate sodium
salt (500 µM), guanylcyclase inhibitor 1H-[1 ,2,4]oxadiazolo[4,3-a]quinoxalin-I-one (ODQ
- 3 µM) or sildenafil + ODQ (450 nM and 3 µM respectively). Thereafter cells were used
to determine mAChR function by constructing dose-response curves of methacholine or
to determine cell viability utilising the Trypan blue, propidium iodide and MTT tests for
cell viability.
Results: Sildenafil pre-treatments induced a 2.5-fold increase in ,the Emax value of
methacholine in neuronal cells but did not show a significant increase in epithelial cells
The Trypan blue test suggests that neither the PDE5 inhibitors nor a cGMP analogue
show any neuroprotection. Rather, sildenafil 450 nM, dipiridamole and IBMX displayed
a neurodegenerative effect. The MTT test was not suitable, since pre-treatment with the
abovementioned drugs inhibited the formation of forrnazan. The propidium iodide assay
could also not be used, due to severe cell loss.
Conclusion: Sildenafil upregulates mAChR function in SH-SY5Y cells and displays a
neurodegenerative, and not a protective property, in neuronal cells. This is not likely to
be associated with its PDE5 inhibitory action, but may possibly be linked to an increase
in cGMP levels via the NO-cGMP pathway. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2005.
|
202 |
Differential modulation of T-type voltage gated calcium channels by G-protein coupled receptors.Hildebrand, Michael Earl 11 1900 (has links)
T-type voltage-gated calcium (Ca2+) channels play critical roles in controlling neuronal excitability, firing patterns, and synaptic plasticity, although the mechanisms and extent to which T-type Ca2+ channels are modulated by G-protein coupled receptors (GPCRs) remains largely unexplored. Investigations into T-type modulation within native neuronal systems have been complicated by the presence of multiple GPCR subtypes and a lack of pharmacological tools to separate currents generated by the three T-type isoforms; Cav3.1, Cav3.2, and Cav3.3. We hypothesize that specific Cav3 subtypes play unique roles in neuronal physiology due to their differential functional coupling to specific GPCRs.
Co-expression of T-type channel subtypes and GPCRs in a heterologous system allowed us to identify the specific interactions between muscarinic acetylcholine (mAChR) or metabotropic glutamate (mGluR) GPCRs and individual Cav3 isoforms. Perforated patch recordings demonstrated that activation of Galpha<q/11>-coupled GPCRs had a strong inhibitory effect on Cav3.3 T-type Ca2+ currents but either no effect or a stimulating effect on Cav3.1 and Cav3.2 peak current amplitudes. Further study of the inhibition of Cav3.3 channels by a specific Galpha<q/11>-coupled mAChR (M1) revealed that this reversible inhibition was associated with a concomitant increase in inactivation kinetics. Pharmacological and genetic experiments indicated that the M1 receptor-mediated inhibition of Cav3.3 occurs specifically through a Galpha<q/11> signaling pathway that interacts with two distinct regions of the Cav3.3 channel.
As hypothesized, the potentiation of Cav3.1 channels by a Galpha<q/11>-coupled mGluR (mGluR1) initially characterized in the heterologous system was also observed in a native neuronal system: the cerebellar Purkinje cell (PC). In recordings on PCs within acute cerebellar slices, we demonstrated that the potentiation of Cav3.1 currents by mGluR1 activation is strongest near the threshold of T-type currents, enhancing the excitability of PCs. Ultrafast two-photon Ca2+ imaging demonstrated that the functional coupling between mGluR1 and T-type transients occurs within dendritic spines, where synaptic integration and plasticity occurs. A subset of these experiments utilized physiological synaptic activation and specific mGluR1 antagonists in wild-type and Cav3.1 knock-out mice to show that the mGluR1-mediated potentiation of Cav3.1 T-type currents may promote synapse-specific Ca2+ signaling in response to bursts of excitatory inputs.
|
203 |
The behaviour of neurologic water during axonal and synaptic neurotransmission: An in silico study.Martin, Erin 27 July 2011 (has links)
Water is known to take on highly organized structures to influence the reactivity of chemical and biological systems; despite this, water is often only implicitly or approximately included in theoretical studies of biochemical systems, if not omitted entirely. Many of the current models for biological processes predate an understanding of the complex behaviour of water, yet these models have not been updated. This thesis presents an exploration of how a better of water might affect the models used to describe neurotransmission. Two classes of systems are investigated, representing the two main categories of neurotransmission: that which occurs along the length of a neuron, and that which occurs between one neuron and another cell. Lipid bilayers are studied using molecular dynamics, and neurotransmitters are studied using Car-Parrinello molecular dynamics. The results indicate that water structures may play a more specific role in neurotransmission than was previously thought.
|
204 |
Modulation of Neuronal Functions : the Role of SLC10A4 / SLC10A4-Mediated Modulation of Neuronal FunctionsPatra, Kalicharan January 2014 (has links)
Mental health of a person depends on the correct functioning of the brain. The brain and the spinal cord contain many types of cells, of which one important type are called the neurons. Neurons are special in the way they connect to each other to form large networks. The chemicals called transmitters are packed at the nerve endings into tiny packets called vesicles and when a signal arrives these vesicles fuse immediately to the attached cell surface and release their contents. The role of the synaptic vesicular transporter proteins is to ensure proper packing of transmitter molecules that can be released upon stimulation. Vesicular packing is an important process. The carrier proteins involved in packing work in coordination to determine the amount and type of transmitters to be packed. Missing a carrier protein from the vesicles might lead to improper packing and inaccurate signaliing. These signaling molecules are known for their implications in many psychiatric and neurological disorders like Alzheimer’s disease, Parkinson’s disease, Schizophrenia, and attention deficit to name just a few. How a vesicular transporter can affect the modulatory functions of aminergic neurons is the subject of this thesis. This thesis reports on the effects of the loss of a vesicular orphan transporter. Study I demonstrates the localization of this protein to monoaminergic and cholinergic terminals. It reports the effect of the loss of Slc10A4 on vesicular dopamine uptake, synaptic clearance of dopamine and hypersensitivity of animals to dopamine related psychostimulants. Study I also provides evidence for ATP as a possible ligand for SLC10A4 protein. Study II provides data on the clinical relevance of Slc10A4 in playing a protective role against vulnerability to epilepsy. It reports that loss of Slc10A4 renders the animals hypersensitive to cholinergic drugs. Study III provides a closer look at individual cholinergic synapses at neuromuscular junctions in mice lacking Slc10A4. The structural and electrophysiological properties of the NMJ are found compromised because of the loss of this vesicular protein. Taken together, this thesis presents a SV protein’s perspective of viewing at modulation of synaptic transmission.
|
205 |
Acute confusional state (delirium) : clinical studies in hip-fracture and stroke patientsGustafson, Yngve January 1991 (has links)
Acute confusional state (ACS) or delirium according to DSM-III-R holds a central position in the medicine of old age. ACS is a common and sometimes the only symptom of diseases and medical complications in the elderly patient. The aim of this study was to elucidate ACS in patients with femoral neck fractures and patients with acute stroke with regard to frequency, predictors, possible pathogenetic mechanisms, associated complications, assessment and documentary routines and the clinical outcome for the patients. An intervention program to prevent postoperative ACS based on our results was developed and evaluated. The main findings of the study were high frequencies of ACS in elderly patients with femoral neck fractures (61 %) and in patients with acute stroke (48 %). The main risk factors for ACS in patients with femoral neck fractures were old age, diseases and drug treatment interfering with cerebral cholinergic metabolism. There was no link between anaesthetic technique and ACS but the connection between peroperative hypotension, early postoperative hypoxia and ACS was close. In stroke patients the degree of extremity paresis and old age were independent ACS risk factors. ACS was commonly associated with post stroke complications such as myocardial infarction, pneumonia, urinary infection and urinary retention. In stroke patients there was a close connection between high hypothalamic-pituitary-adrenal axis (HPA-axis) activity and ACS. High HPA-axis activity and disturbances in the cerebral cholinergic system may be two important ACS mechanisms. A correct diagnosis is a prerequisite for proper treatment of ACS and its underlying causes. In the orthopaedic wards both physicians and nurses diagnosed and documented ACS poorly and therefore associated complications were insufficiently treated. The intervention program for postoperative ACS, aimed mainly at protecting the cerebral oxidative metabolism and thereby the cerebral cholinergic metabolism which is especially sensitive to hypoxia. Postoperative complications associated with ACS were also treated. The intervention resulted in reduced frequency, duration and severity of postoperative ACS and in shorter orthopedic ward stay for patients with femoral neck fractures.Key words: Acute confusional state, delirium, elderly / <p>S. 1-76: sammanfattning, s. 77-175: 6 uppsatser</p> / digitalisering@umu
|
206 |
ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR REGULATION IN EXPERIMENTAL NEURODEGENERATIVE DISEASECharriez, Christina Margaret 01 January 2010 (has links)
The α7 nicotinic acetylcholine receptor (nAChR) is involved in learning and memory, synaptic plasticity, neuroprotection, inflammation, and presynaptic regulation of neurotransmitter release. Alzheimer’s disease (AD), a neurodegenerative disease characterized by diminished cognitive abilities, memory loss, and neuropsychiatric disturbances, is associated with a loss of nAChRs. Similarly, traumatic brain injury (TBI) may result in long term neurobehavioral changes exemplified by cognitive dysfunction. Deficits in α7 nAChR expression have previously been shown in experimental TBI and may be related to cognitive impairment experienced in patients following TBI.
The purpose of this dissertation was to investigate changes in α7 nAChR expression in models of neurodegeneration and determine if allosteric modulation of the nAChR facilitates functional recovery following experimental TBI through changes in nAChRs. Experimental models employed include a transgenic mouse model of AD that overexpresses the amyloid precursor protein (APPswe mice) and the controlled cortical impact injury model of TBI in rats. Quantitative receptor autoradiography using α-[125I]-bungarotoxin and [125I]-epibatidine and in situ hybridization were used to investigate changes in nAChR density and mRNA expression, respectively.
In the first study, the effects of aging and β-amyloid on α7 nAChR expression were evaluated in APPswe mice. Hippocampal α7 nAChR density was significantly upregulated in APPswe mice compared to wild-type mice. It is postulated that elevated Aβ levels bind to the α7 nAChR resulting in upregulation. In a second study, galantamine, a medication used in the treatment of AD, was administered subchronically following experimental TBI to determine if treatment could facilitate cognitive recovery and affect nAChR expression. Interestingly, the results indicate TBI interferes with agonist mediated upregulation of nAChRs, and galantamine did not improve function in a behavioral task of learning a memory. In a third study, the regulation of TBI related deficits in α7 nAChRs was examined 48 hours following injury. α7 nAChR deficits occurred with a reduction in α7 mRNA in several hippocampal regions and non-α7 nAChR deficits occurred with a reduction in α4 mRNA in the metathalamus. The results of these studies suggest AD and TBI may involve complex but parallel processes contributing to the regulation of α7 nAChRs.
|
207 |
Potential Roles for the Neurotrophic Molecules Agrin and Neuregulin in Regulating Aspects of the Inflammatory ResponseMencel, Malwina 22 May 2015 (has links)
Agrin and neuregulin are neurotrophic molecules well known for their roles at synapses in the peripheral and central nervous systems. The expression of these two molecules is not restricted to these sites however, as they are broadly expressed across multiple organ systems. What roles do agrin and neuregulin play within these alternate systems; what is the function of these molecules outside the nervous system? Here I investigate potential roles for agrin and neuregulin in inflammation. Inflammation is an immediate response by innate immune cells, primarily macrophages, to infection and is characterized by the synthesis of pro-inflammatory mediators. The innate immune system possesses multiple redundant mechanisms to locally control inflammation. The neuro-immune axis is one means of control. Often called the cholinergic anti-inflammatory pathway, it acts to regulate local inflammation via nerve-secreted acetylcholine signaling through the homopentameric α7 nicotinic acetylcholine receptors (α7nAChR) present on macrophages.
Both agrin and neuregulin have been independently described to share an intricate relationship with acetylcholine receptors (AChR) in the nervous system. Agrin is best known for its role in AChR aggregation at the neuromuscular junction while neuregulin has related roles in AChR transcription, cell survival, communication and differentiation. Based on the common characteristics of synapses in the nervous and immune systems we were curious to see if agrin and neuregulin played analogous roles on macrophages.
Here we show that agrin and its receptor dystroglycan are expressed on RAW264.7 macrophages. In addition, agrin treated macrophages demonstrate increased endogenous agrin and α7nAChR expression. By blocking α-dystroglycan (α-DG), a receptor for agrin, with an anti-α-DG antibody we further saw a reduction in agrin expression. We also show that agrin is able to aggregate surface α7nAChRs and transmembrane agrin co-localizes with α7nAChRs therein. Agrin appears to induce approximately a 15-fold increase in anti-inflammatory cytokine IL-10 in macrophages but does not increase pro-inflammatory cytokine TNF-α or IL-6 synthesis. Agrin-treated macrophages challenged with LPS, a potent activator of inflammation, exhibit a 57% decrease in IL-6. Macrophages treated with agrin also exhibit a 4-fold increase in STAT3, a regulator of anti-inflammatory action.
The potential anti-inflammatory effects of agrin in the periphery parallel previous work describing the effects of neuregulin in the brain. Previous work completed by our lab suggests a role for neuregulin in augmenting the expression of α7nAChRs on microglia, the macrophages of the brain, but not in peripheral macrophages. Here we show that treatment of LPS challenged microglia with neuregulin produces an 88% decrease in IL-6 and a 33% decrease in TNF-α. These results indicate both agrin and neuregulin are able to induce an increase in α7nAChRs and augment the synthesis of pro- and anti-inflammatory cytokines in their respective systems. These results also further the support the evidence of neuro-immune crosstalk in the immune system. Taken together these results present two novel players in inflammatory regulation by macrophages in the periphery and CNS.
|
208 |
The modulating effect of sildenafil on cell viability and on the function of selected pharmacological receptors in cell cultures / B.E. EagarEager, Blenerhassit Edward January 2004 (has links)
Since sildenafil's (Viagra®), a phospodiesterase type 5 (PDE5) inhibitor, approval for the
treatment of male erectile dysfunction (MED) in the United States early 1998, 274
adverse event reports were filed by the Food and Drug Administration (FDA) between 4
Jan. 1998 and 21 Feb. 2001 with sildenafil as the primary suspect of various
neurological disturbances, including amnesia and aggressive behaviour (Milman and
Arnold, 2002). These and other research findings have prompted investigations into the
possible central effects of sildenafil.
The G protein-coupled muscarinic adetylcholine receptors (mAChRs) and serotonergic
receptors (5HT-Rs), have been linked to antidepressant action (Brink et al. 2004).
GPCRs signal through the phosphatidylinositol signal transduction pathway known to
activate protein kinases (PKs). Since the nitric oxide (NO)-guanylyl cyclase signal
transduction pathway is also known to involve the activation of PKs (via cyclic guanosine
monophosphate (cGMP)), the scope is opened for sildenafil to possibly modulate the
action of antidepressants by elevating cGMP levels.
It is generally assumed that excitotoxic delayed cell death is pathologically linked to an
increase in the release of excitatory neurotransmitters e.g. glutamate. Glutamate
antagonists, especially those that block the define NMDA-receptors, are neuroprotective,
showing the importance of the NMDA-NO-cGMP pathway in neuroprotection (Brandt et
al., 2003). Sildenafil may play a role in neuroprotection by elevating cGMP levels.
Aims: The aims of the study were to investigate any neuroprotective properties of
sildenafil, as well as modulating effects of sildenafil pre-treatment on mAChR function.
Methods: Human neuroblastoma SH-SY5Y or human epithelial HeLa cells were seeded
in 24-well plates and pre-treated for 24 hours in serum-free medium with no drug
(control), PDE5 inhibitors sildenafil (100nM and 450 nM), dipiridamole (20 µM) or
zaprinast (20 µM), non-selective PDE inhibitor 3-isobutyl-I-methylxanthine (IBMX -
ImM), cGMP analogue N2,2'-0-dibutyrylguanosine 3'5'-cyclic monophosphate sodium
salt (500 µM), guanylcyclase inhibitor 1H-[1 ,2,4]oxadiazolo[4,3-a]quinoxalin-I-one (ODQ
- 3 µM) or sildenafil + ODQ (450 nM and 3 µM respectively). Thereafter cells were used
to determine mAChR function by constructing dose-response curves of methacholine or
to determine cell viability utilising the Trypan blue, propidium iodide and MTT tests for
cell viability.
Results: Sildenafil pre-treatments induced a 2.5-fold increase in ,the Emax value of
methacholine in neuronal cells but did not show a significant increase in epithelial cells
The Trypan blue test suggests that neither the PDE5 inhibitors nor a cGMP analogue
show any neuroprotection. Rather, sildenafil 450 nM, dipiridamole and IBMX displayed
a neurodegenerative effect. The MTT test was not suitable, since pre-treatment with the
abovementioned drugs inhibited the formation of forrnazan. The propidium iodide assay
could also not be used, due to severe cell loss.
Conclusion: Sildenafil upregulates mAChR function in SH-SY5Y cells and displays a
neurodegenerative, and not a protective property, in neuronal cells. This is not likely to
be associated with its PDE5 inhibitory action, but may possibly be linked to an increase
in cGMP levels via the NO-cGMP pathway. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2005.
|
209 |
The role of beta-arrestin in regulating the muscarinic acetylcholine type II receptorJones, Kymry Thereasa 06 July 2007 (has links)
The muscarinic acetylcholine type 2 receptor (M2 mAChR), a member of the GPCR superfamily, is found throughout the parasympathetic nervous system where it controls pulmonary, urinary, and cardiac function, and neurotransmission. The molecular mechanisms that regulate M2 mAChR availability at the cell surface are an important component in controlling these physiological events. Since beta-arrestin proteins are known to regulate the activity of other GPCRs, we sought to identify their role in regulating M2 mAChR activity, a topic that remains contentious in the field. To achieve this goal we utilized mouse embryonic fibroblasts (MEFs) derived from beta-arrestin knockout mice lacking one or both isoforms (MEF KO1, KO2, or KO1/2 cells) in addition to exogenous expression of beta-arrestin mutants. This study demonstrates that agonist-induced internalization of M2 mAChR is beta-arrestin- and clathrin-dependent, and that the receptor stably co-localizes with beta-arrestin in early endosomal vesicles suggesting it behaves as a class B receptor. Next, we sought to identify beta-arrestin s function in regulating the post-endocytic trafficking (down-regulation) of the M2 mAChR. MEF KO1/2 cells were unable to down-regulate M2 mAChRs whereas MEF KO1 or KO2 cells retained the ability to do so. In MEFwt cells, both M2 mAChR and beta-arrestin exhibited basal ubiquitination that increased following agonist stimulation. Receptor degradation appeared to be regulated by the ubiquitination status of beta-arrestin 2, since expression of a chimeric â-arrestin 2 form fused to ubiquitin increased both constitutive and agonist-promoted down-regulation, whereas expression of a beta-arrestin 2 mutant lacking putative ubiquitination sites, beta-arrestin 2K18R, K107R, K108R, K207R, K296R, significantly blocked degradation while internalization and stable association remained intact. Upon further analysis, the beta-arrestin 2K18R, K107R, K108R, K207R, K296R mutant blocked delivery of M2 mAChR to the late endosome/lysosome, presumably where degradation occurs. Inhibition of proteasome-dependent recycling of ubiquitin blocked receptor down-regulation without affecting internalization or the ubiquitination state of the M2 mAChR while ubiquitination of beta-arrestin 2 diminished significantly. These results support a role for ubiquitinated beta-arrestin in mediating M2 mAChR sorting and degradation in the lysosome. Collectively, these studies give us new insight on the function of beta-arrestin in regulating the activity of the M2 mAChR.
|
210 |
New materials and scaffold fabrication method for nerve tissue engineeringGumera, Christiane Bacolor 25 February 2009 (has links)
Acetylcholine is a neurotransmitter that regulates neurite branching, induces neurite outgrowth, and synapse formation. Because of its various roles in neuronal activities, acetylcholine-based materials may also be useful in nerve repair. We present a series of biodegradable polymers with varying concentrations of acetylcholine-like motifs. We hypothesize that neurite sprouting and extension can be enhanced by using materials to present biochemical and physical cues.
Acetylcholine-like motifs were incorporated by the polycondensation of diglycidyl sebacate, aminoethyl acetate, and leucine ethyl ester, which permitted control over acetylcholine motif concentration. Interactions between the polymers and neurons were characterized using rat dorsal root ganglia explants (DRG). We screened the potential application of these materials in nerve tissue engineering using the following criteria: 1) neurite sprouting, 2) neurite length, and 3) distribution of the neurite lengths. The ability of DRG to sprout neurites was influenced by the concentration of acetylcholine motifs of the polymer. Addition of acetylcholine receptor antagonists to DRG cultured on the polymers significantly decreased neurite sprouting, suggesting acetylcholine receptors mediate sprouting on the polymers. Future studies may examine how neurons on acetylcholine-based polymers exhibit changes in downstream signaling events and cell excitability that are associated with receptor activation.
In preparation for testing the acetylcholine-based polymers in vivo, porous scaffolds with longitudinally oriented channels were fabricated using fiber templating and salt leaching. Micro computed tomography, scanning electron microscopy, and cryo-sectioning revealed the presence of longitudinally oriented channels. Channel volume and average pore size of the scaffolds were controlled by the number of fibers and salt fusion time. Future studies may involve testing the effect of acetylcholine-motifs by coating polymers onto such scaffolds or assessing the effect of the scaffold's dimensional properties on nerve regeneration.
|
Page generated in 0.0536 seconds