• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 392
  • 296
  • 114
  • 30
  • 29
  • 24
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • Tagged with
  • 1076
  • 944
  • 130
  • 97
  • 97
  • 95
  • 91
  • 83
  • 80
  • 73
  • 68
  • 68
  • 65
  • 58
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Polymerisation and export of alginate in Pseudomanas aeruginosa : functional assignment and catalytic mechanism of Alg8/44 : a thesis presented to Massey University in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Microbiology

Remminghorst, Uwe January 2007 (has links)
Alginate biosynthesis is not only a major contributor to pathogenicity of P. aeruginosa but also an important factor in colonization of adverse environmental habitats by biofilm formation. The requirement of proteins Alg8 and Alg44, encoded by their respective genes in the alginate biosynthesis gene cluster, for alginate biosynthesis of P. aeruginosa was demonstrated, since deletion mutants were unable to produce or polymerise alginate. AlgX deletion mutants failed to produce the alginate characteristic mucoid phenotype, but showed low concentrations of uronic acid monomers in the culture supernatants. Complementation experiments using PCR based approaches were used to determine the complementing ORF and all deletion mutants could be complemented to at least wildtype levels by introducing a plasmid harbouring the respective gene. Increased copy numbers of Alg44 did not impact on the amount of alginate produced, whereas increased copy numbers of the alg8 gene led to an at least 10 fold stronger alginate production impacting on biofilm structure and stability. Topological analysis using reporter protein fusions and subsequent subcellular fractionation experiments revealed that Alg8 is located in the cytoplasmic membrane and contains at least 4 transmembrane helices, 3 of them at its C terminus. Its large cytosolic loop showed similarities to inverting glycosyltransferases and the similarities were used to generate a threading model using SpsA, a glycosyltransferase involved in spore coat formation of B. subtilis, as a template. Site-directed mutagenesis confirmed the importance of identified motifs commonly detected in glycosyltransferases. Inactivation of the DXD motif, which has been shown to be involved in nucleotide sugar binding, led to loss-offunction mutants of Alg8 and further replacements revealed putative candidates for the catalytic residue(s). Contradicting the commonly reported prediction of being a transmembrane protein, Alg44 was shown to be a periplasmic protein. The highest specific alkaline phosphatase activity of its fusion protein could be detected in the periplasmic fraction and not in the insoluble membrane fraction. Bioinformatical analysis of Alg44 revealed structural similarities of its N terminus to PilZ domains, shown to bind cyclic-di-GMP, and of its C terminus to MexA, a membrane fusion protein involved in multi-drug efflux systems. Thus, it was suggested that Alg44 has a regulatory role for alginate biosynthesis in bridging the periplasm and connecting outer and cytoplasmic membrane components. AlgX was shown to interact with MucD, a periplasmic serine protease or chaperone homologue, and is suggested to exert its impact on alginate production via MucD interaction. In vitro alginate polymerisation assays revealed that alginate production requires protein components of the outer and cytoplasmic membrane as well as the periplasm, and these data were used to construct a model describing a multi-enzyme, membrane and periplasm spanning complex for alginate polymerisation, modification and export.
732

Polymerisation and export of alginate in Pseudomanas aeruginosa : functional assignment and catalytic mechanism of Alg8/44 : a thesis presented to Massey University in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Microbiology

Remminghorst, Uwe January 2007 (has links)
Alginate biosynthesis is not only a major contributor to pathogenicity of P. aeruginosa but also an important factor in colonization of adverse environmental habitats by biofilm formation. The requirement of proteins Alg8 and Alg44, encoded by their respective genes in the alginate biosynthesis gene cluster, for alginate biosynthesis of P. aeruginosa was demonstrated, since deletion mutants were unable to produce or polymerise alginate. AlgX deletion mutants failed to produce the alginate characteristic mucoid phenotype, but showed low concentrations of uronic acid monomers in the culture supernatants. Complementation experiments using PCR based approaches were used to determine the complementing ORF and all deletion mutants could be complemented to at least wildtype levels by introducing a plasmid harbouring the respective gene. Increased copy numbers of Alg44 did not impact on the amount of alginate produced, whereas increased copy numbers of the alg8 gene led to an at least 10 fold stronger alginate production impacting on biofilm structure and stability. Topological analysis using reporter protein fusions and subsequent subcellular fractionation experiments revealed that Alg8 is located in the cytoplasmic membrane and contains at least 4 transmembrane helices, 3 of them at its C terminus. Its large cytosolic loop showed similarities to inverting glycosyltransferases and the similarities were used to generate a threading model using SpsA, a glycosyltransferase involved in spore coat formation of B. subtilis, as a template. Site-directed mutagenesis confirmed the importance of identified motifs commonly detected in glycosyltransferases. Inactivation of the DXD motif, which has been shown to be involved in nucleotide sugar binding, led to loss-offunction mutants of Alg8 and further replacements revealed putative candidates for the catalytic residue(s). Contradicting the commonly reported prediction of being a transmembrane protein, Alg44 was shown to be a periplasmic protein. The highest specific alkaline phosphatase activity of its fusion protein could be detected in the periplasmic fraction and not in the insoluble membrane fraction. Bioinformatical analysis of Alg44 revealed structural similarities of its N terminus to PilZ domains, shown to bind cyclic-di-GMP, and of its C terminus to MexA, a membrane fusion protein involved in multi-drug efflux systems. Thus, it was suggested that Alg44 has a regulatory role for alginate biosynthesis in bridging the periplasm and connecting outer and cytoplasmic membrane components. AlgX was shown to interact with MucD, a periplasmic serine protease or chaperone homologue, and is suggested to exert its impact on alginate production via MucD interaction. In vitro alginate polymerisation assays revealed that alginate production requires protein components of the outer and cytoplasmic membrane as well as the periplasm, and these data were used to construct a model describing a multi-enzyme, membrane and periplasm spanning complex for alginate polymerisation, modification and export.
733

Polymerisation and export of alginate in Pseudomanas aeruginosa : functional assignment and catalytic mechanism of Alg8/44 : a thesis presented to Massey University in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Microbiology

Remminghorst, Uwe January 2007 (has links)
Alginate biosynthesis is not only a major contributor to pathogenicity of P. aeruginosa but also an important factor in colonization of adverse environmental habitats by biofilm formation. The requirement of proteins Alg8 and Alg44, encoded by their respective genes in the alginate biosynthesis gene cluster, for alginate biosynthesis of P. aeruginosa was demonstrated, since deletion mutants were unable to produce or polymerise alginate. AlgX deletion mutants failed to produce the alginate characteristic mucoid phenotype, but showed low concentrations of uronic acid monomers in the culture supernatants. Complementation experiments using PCR based approaches were used to determine the complementing ORF and all deletion mutants could be complemented to at least wildtype levels by introducing a plasmid harbouring the respective gene. Increased copy numbers of Alg44 did not impact on the amount of alginate produced, whereas increased copy numbers of the alg8 gene led to an at least 10 fold stronger alginate production impacting on biofilm structure and stability. Topological analysis using reporter protein fusions and subsequent subcellular fractionation experiments revealed that Alg8 is located in the cytoplasmic membrane and contains at least 4 transmembrane helices, 3 of them at its C terminus. Its large cytosolic loop showed similarities to inverting glycosyltransferases and the similarities were used to generate a threading model using SpsA, a glycosyltransferase involved in spore coat formation of B. subtilis, as a template. Site-directed mutagenesis confirmed the importance of identified motifs commonly detected in glycosyltransferases. Inactivation of the DXD motif, which has been shown to be involved in nucleotide sugar binding, led to loss-offunction mutants of Alg8 and further replacements revealed putative candidates for the catalytic residue(s). Contradicting the commonly reported prediction of being a transmembrane protein, Alg44 was shown to be a periplasmic protein. The highest specific alkaline phosphatase activity of its fusion protein could be detected in the periplasmic fraction and not in the insoluble membrane fraction. Bioinformatical analysis of Alg44 revealed structural similarities of its N terminus to PilZ domains, shown to bind cyclic-di-GMP, and of its C terminus to MexA, a membrane fusion protein involved in multi-drug efflux systems. Thus, it was suggested that Alg44 has a regulatory role for alginate biosynthesis in bridging the periplasm and connecting outer and cytoplasmic membrane components. AlgX was shown to interact with MucD, a periplasmic serine protease or chaperone homologue, and is suggested to exert its impact on alginate production via MucD interaction. In vitro alginate polymerisation assays revealed that alginate production requires protein components of the outer and cytoplasmic membrane as well as the periplasm, and these data were used to construct a model describing a multi-enzyme, membrane and periplasm spanning complex for alginate polymerisation, modification and export.
734

Polymerisation and export of alginate in Pseudomanas aeruginosa : functional assignment and catalytic mechanism of Alg8/44 : a thesis presented to Massey University in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Microbiology

Remminghorst, Uwe January 2007 (has links)
Alginate biosynthesis is not only a major contributor to pathogenicity of P. aeruginosa but also an important factor in colonization of adverse environmental habitats by biofilm formation. The requirement of proteins Alg8 and Alg44, encoded by their respective genes in the alginate biosynthesis gene cluster, for alginate biosynthesis of P. aeruginosa was demonstrated, since deletion mutants were unable to produce or polymerise alginate. AlgX deletion mutants failed to produce the alginate characteristic mucoid phenotype, but showed low concentrations of uronic acid monomers in the culture supernatants. Complementation experiments using PCR based approaches were used to determine the complementing ORF and all deletion mutants could be complemented to at least wildtype levels by introducing a plasmid harbouring the respective gene. Increased copy numbers of Alg44 did not impact on the amount of alginate produced, whereas increased copy numbers of the alg8 gene led to an at least 10 fold stronger alginate production impacting on biofilm structure and stability. Topological analysis using reporter protein fusions and subsequent subcellular fractionation experiments revealed that Alg8 is located in the cytoplasmic membrane and contains at least 4 transmembrane helices, 3 of them at its C terminus. Its large cytosolic loop showed similarities to inverting glycosyltransferases and the similarities were used to generate a threading model using SpsA, a glycosyltransferase involved in spore coat formation of B. subtilis, as a template. Site-directed mutagenesis confirmed the importance of identified motifs commonly detected in glycosyltransferases. Inactivation of the DXD motif, which has been shown to be involved in nucleotide sugar binding, led to loss-offunction mutants of Alg8 and further replacements revealed putative candidates for the catalytic residue(s). Contradicting the commonly reported prediction of being a transmembrane protein, Alg44 was shown to be a periplasmic protein. The highest specific alkaline phosphatase activity of its fusion protein could be detected in the periplasmic fraction and not in the insoluble membrane fraction. Bioinformatical analysis of Alg44 revealed structural similarities of its N terminus to PilZ domains, shown to bind cyclic-di-GMP, and of its C terminus to MexA, a membrane fusion protein involved in multi-drug efflux systems. Thus, it was suggested that Alg44 has a regulatory role for alginate biosynthesis in bridging the periplasm and connecting outer and cytoplasmic membrane components. AlgX was shown to interact with MucD, a periplasmic serine protease or chaperone homologue, and is suggested to exert its impact on alginate production via MucD interaction. In vitro alginate polymerisation assays revealed that alginate production requires protein components of the outer and cytoplasmic membrane as well as the periplasm, and these data were used to construct a model describing a multi-enzyme, membrane and periplasm spanning complex for alginate polymerisation, modification and export.
735

Polymerisation and export of alginate in Pseudomanas aeruginosa : functional assignment and catalytic mechanism of Alg8/44 : a thesis presented to Massey University in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Microbiology

Remminghorst, Uwe January 2007 (has links)
Alginate biosynthesis is not only a major contributor to pathogenicity of P. aeruginosa but also an important factor in colonization of adverse environmental habitats by biofilm formation. The requirement of proteins Alg8 and Alg44, encoded by their respective genes in the alginate biosynthesis gene cluster, for alginate biosynthesis of P. aeruginosa was demonstrated, since deletion mutants were unable to produce or polymerise alginate. AlgX deletion mutants failed to produce the alginate characteristic mucoid phenotype, but showed low concentrations of uronic acid monomers in the culture supernatants. Complementation experiments using PCR based approaches were used to determine the complementing ORF and all deletion mutants could be complemented to at least wildtype levels by introducing a plasmid harbouring the respective gene. Increased copy numbers of Alg44 did not impact on the amount of alginate produced, whereas increased copy numbers of the alg8 gene led to an at least 10 fold stronger alginate production impacting on biofilm structure and stability. Topological analysis using reporter protein fusions and subsequent subcellular fractionation experiments revealed that Alg8 is located in the cytoplasmic membrane and contains at least 4 transmembrane helices, 3 of them at its C terminus. Its large cytosolic loop showed similarities to inverting glycosyltransferases and the similarities were used to generate a threading model using SpsA, a glycosyltransferase involved in spore coat formation of B. subtilis, as a template. Site-directed mutagenesis confirmed the importance of identified motifs commonly detected in glycosyltransferases. Inactivation of the DXD motif, which has been shown to be involved in nucleotide sugar binding, led to loss-offunction mutants of Alg8 and further replacements revealed putative candidates for the catalytic residue(s). Contradicting the commonly reported prediction of being a transmembrane protein, Alg44 was shown to be a periplasmic protein. The highest specific alkaline phosphatase activity of its fusion protein could be detected in the periplasmic fraction and not in the insoluble membrane fraction. Bioinformatical analysis of Alg44 revealed structural similarities of its N terminus to PilZ domains, shown to bind cyclic-di-GMP, and of its C terminus to MexA, a membrane fusion protein involved in multi-drug efflux systems. Thus, it was suggested that Alg44 has a regulatory role for alginate biosynthesis in bridging the periplasm and connecting outer and cytoplasmic membrane components. AlgX was shown to interact with MucD, a periplasmic serine protease or chaperone homologue, and is suggested to exert its impact on alginate production via MucD interaction. In vitro alginate polymerisation assays revealed that alginate production requires protein components of the outer and cytoplasmic membrane as well as the periplasm, and these data were used to construct a model describing a multi-enzyme, membrane and periplasm spanning complex for alginate polymerisation, modification and export.
736

Polymerisation and export of alginate in Pseudomanas aeruginosa : functional assignment and catalytic mechanism of Alg8/44 : a thesis presented to Massey University in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Microbiology

Remminghorst, Uwe January 2007 (has links)
Alginate biosynthesis is not only a major contributor to pathogenicity of P. aeruginosa but also an important factor in colonization of adverse environmental habitats by biofilm formation. The requirement of proteins Alg8 and Alg44, encoded by their respective genes in the alginate biosynthesis gene cluster, for alginate biosynthesis of P. aeruginosa was demonstrated, since deletion mutants were unable to produce or polymerise alginate. AlgX deletion mutants failed to produce the alginate characteristic mucoid phenotype, but showed low concentrations of uronic acid monomers in the culture supernatants. Complementation experiments using PCR based approaches were used to determine the complementing ORF and all deletion mutants could be complemented to at least wildtype levels by introducing a plasmid harbouring the respective gene. Increased copy numbers of Alg44 did not impact on the amount of alginate produced, whereas increased copy numbers of the alg8 gene led to an at least 10 fold stronger alginate production impacting on biofilm structure and stability. Topological analysis using reporter protein fusions and subsequent subcellular fractionation experiments revealed that Alg8 is located in the cytoplasmic membrane and contains at least 4 transmembrane helices, 3 of them at its C terminus. Its large cytosolic loop showed similarities to inverting glycosyltransferases and the similarities were used to generate a threading model using SpsA, a glycosyltransferase involved in spore coat formation of B. subtilis, as a template. Site-directed mutagenesis confirmed the importance of identified motifs commonly detected in glycosyltransferases. Inactivation of the DXD motif, which has been shown to be involved in nucleotide sugar binding, led to loss-offunction mutants of Alg8 and further replacements revealed putative candidates for the catalytic residue(s). Contradicting the commonly reported prediction of being a transmembrane protein, Alg44 was shown to be a periplasmic protein. The highest specific alkaline phosphatase activity of its fusion protein could be detected in the periplasmic fraction and not in the insoluble membrane fraction. Bioinformatical analysis of Alg44 revealed structural similarities of its N terminus to PilZ domains, shown to bind cyclic-di-GMP, and of its C terminus to MexA, a membrane fusion protein involved in multi-drug efflux systems. Thus, it was suggested that Alg44 has a regulatory role for alginate biosynthesis in bridging the periplasm and connecting outer and cytoplasmic membrane components. AlgX was shown to interact with MucD, a periplasmic serine protease or chaperone homologue, and is suggested to exert its impact on alginate production via MucD interaction. In vitro alginate polymerisation assays revealed that alginate production requires protein components of the outer and cytoplasmic membrane as well as the periplasm, and these data were used to construct a model describing a multi-enzyme, membrane and periplasm spanning complex for alginate polymerisation, modification and export.
737

Determination of the structural features of A-band lipopolysaccharide from a rough mutant of Pseudomonas aeruginosa.

Arsenault, Todd L. MacLean, D.B> Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1992. / Source: Dissertation Abstracts International, Volume: 54-08, Section: B, page: 4124. Adviser: D. B. MacLean.
738

Değişik klinik örneklerden izole edilen pseudomonas aeruginosa suşlarında virülans faktörleri ve bu faktörlerin sentezleşmesinde rol oynayan bakteriyel iletişim "Quorum sensing" sistemindeki sinyal moleküllerinin hastalık patogenezindeki rolü /

Önal, Süleyman. Arıdoğan, Buket Cicioğlu. January 2005 (has links) (PDF)
Tez (Tıpta Uzmanlık) - Süleyman Demirel Üniversitesi, Tıp Fakültesi, Mikrobiyoloji ve Klinik Mikrobiyoloji Anabilim Dalı, 2005. / Bibliyografya var.
739

Studies on the molecular mechanisms of resistance to fluoroquinolones and carbapenems in selected bacterial species /

El Amin, Nagwa Mustafa, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
740

Interaction between waterborne pathogenic bacteria and Acanthamoeba castellanii /

Abd, Hadi, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.

Page generated in 0.0297 seconds