• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AFRL/JWSD-1 DATA ARCHIVAL SYSTEM

Self, Lance 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Properly managing the volumes of data that are sent from satellites to the ground is becoming more important for a number of reasons. As more satellites are launched more data becomes available and there is a wealth of information contained within the data sets; information regarding the performance of the satellite subsystems, sensors, efficiency of autonomous software, and the accuracy of models and simulations to name a few. Proper storage and archival methods help ensure these data sets are available to scientists and engineers to discover previously unknown and “never before thought of” relationships between systems or subsystems. The most obvious “first step” in this process is to preserve the data for work that may lead towards new discovery and future advances. AFRL is committed to preserving these data sets for these and other stated reasons. This paper describes one ongoing effort related to the Joint Warfighting Space Demonstration 1 (JWSD-1) (aka RoadRunner) satellite program that archives all the data sent to the ground and makes that data available via the Internet to concerned groups of users.
2

Machine Translation Through the Creation of a Common Embedding Space

Sandvick, Joshua, Sandvick 11 December 2018 (has links)
No description available.
3

Damage Detection Methodologies For Structural Health Monitoring of Thin-Walled Pressure Vessels

Modesto, Arturo 01 January 2015 (has links)
There is a need in exploring structural health monitoring technologies for the composite structures particularly aged Composite Overwrapped Pressure Vessels (COPVs) for the current and future implementation of COPVs for space missions. In this study, the research was conducted in collaboration with NASA Kennedy Space Center and also NASA Marshall Space and Flight Center engineers. COPVs have been used to store inert gases like helium (for propulsion) and nitrogen (for life support) under varying degrees of pressure onboard the orbiter since the beginning of the Space Shuttle Program. After the Columbia accident, the COPVs were re-examined and different studies (e.g. Laser profilometry inspection, NDE utilizing Raman Spectroscopy) have been conducted and can be found in the literature. To explore some of the unique in-house developed hardware and algorithms for monitoring COPVs, this project is carried out with the following general objectives: 1) Investigate the obtaining indices/features related to the performance and/or condition of pressure vessels 2) Explore different sensing technologies and Structural Health Monitoring (SHM) systems 3) Explore different types of data analysis methodologies to detect damage with particular emphasis on statistical analysis, cross-correlation analysis and Auto Regressive model with eXogeneous input (ARX) models 4) Compare differences in various types of pressure vessels First an introduction to theoretical pressure vessels, which are used to compare to actual test specimens, is presented. Next, a background review of the test specimens including their applications and importance is discussed. Subsequently, a review of related SHM applications to this study is presented. The theoretical background of the data analysis methodologies used to detect damage in this study are provided and these methodologies are applied in the laboratory using Composite Overwrapped Pressure Vessels (COPVs) to determine the effectiveness of these techniques. Next another study on the Air Force Research Laboratory (AFRL) Tank that is carried out in collaboration with NASA KSC and NASA MSFC is presented with preliminary results. Finally the results and interpretations of both studies are summarized and discussed.
4

Implementations of Fourier Methods in CFD to Analyze Distortion Transfer and Generation Through a Transonic Fan

Peterson, Marshall Warren 01 June 2016 (has links)
Inlet flow distortion is a non-uniform total pressure, total temperature, or swirl (flow angularity) condition at an aircraft engine inlet. Inlet distortion is a critical consideration in modern fan and compressor design. This is especially true as the industry continues to increase the efficiency and operating range of air breathing gas turbine engines. The focus of this paper is to evaluate the Computational Fluid Dynamics (CFD) Harmonic Balance (HB) solver in STAR-CCM+ as a reduced order method for capturing inlet distortion as well as the associated distortion transfer and generation. New methods for quantitatively describing and analyzing distortion transfer and generation are investigated. The geometry used is the rotor 4 fan geometry, consisting of one rotor and one stator. The inlet boundary condition is a 90-degree sector total pressure distortion profile with total pressure and swirl held constant. Multiple HB simulations with varying mode combinations and distortion intensities are analyzed and compared against full annulus Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. Best practices and recommendations for the implementation of the HB solver are given. The pre-existing Society of Automotive Engineers Aerospace Recommended Practice (SAE-ARP) 1420b descriptors are demonstrated to be inadequate for the purposes of analyzing distortion transfer and generation on a stage-to-stage basis. New implementations of Fourier methods are presented as an alternative to the SAE-ARP 1420b descriptors. These Fourier descriptors are shown to describe distortion transfer and generation to a higher degree of fidelity than the SAE-ARP 1420b descriptors. These new descriptors are demonstrated on the analysis of full annulus URANS and HB simulations. The HB solver is shown to be capable of capturing distortion transfer, generation and performance degradation. Recommendations for the optimal implementation of the HB method are given.
5

Design Of An Autopilot For Small Unmanned Aerial Vehicles

Christiansen, Reed Siefert 23 June 2004 (has links) (PDF)
This thesis presents the design of an autopilot capable of flying small unmanned aerial vehicles with wingspans less then 21 inches. The autopilot is extremely small and lightweight allowing it to fit in aircraft of this size. The autopilot features an advanced, highly autonomous flight control system with auto-launch and auto-landing algorithms. These features allow the autopilot to be operated by a wide spectrum of skilled and unskilled users. Innovative control techniques implemented in software, coupled with light weight, robust, and inexpensive hardware components were used in the design of the autopilot.

Page generated in 0.0214 seconds