• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AI-vision som tillämpning i en stålindustri : Med inriktning på objektdetektering & bildklassificering

Wenger, Jakob January 2020 (has links)
I takt med att industri 4.0 sveper över dagens industrier så utvecklas tillämpningsområden inom artificiell intelligens (AI). En relativt nyfunnen tillämpning som vanligen benämns AI-vision eller Computer-vision, inom detta arbete har benämningen AI-vision valts. Tillämpningen handlar om att datorer och maskiner upprättas med förmågan att tolka visuellt innehåll.I och med detta tränas en intelligent modell som klarar av att fatta beslut utifrån visuell data, såsom bild och video. Inriktningen i arbetet belyser inom AI-Vision teknikerna objektdetektering och bildklassificering. Objektdetektering innebär att ett eller flera specifika objekt upptäcks från en bild av flera komplexa linjer och former. Tekniken används inom en rad olika tillämpningar såsom t.ex. robotnavigering och automatisk fordonsstyrning. Syftet med bildklassificering ibland kallat bildigenkänning, handlar om att klassificera och kategorisera bilden genom att identifiera och sortera väsentlig data. Detta i försök att konstatera vad bilden i sig föreställer. För att forma och rama in detta arbete på ett lämpligt sätt ämnas huvudsakliga målet med arbetet beskriva hur tekniker såsom objektdetektering och bildklassificerings-modeller konstrueras. Så även redogöra kring bakomliggande intelligens i modellerna, samt vilka verktyg och metoder som används för att skapa dessa modeller. Arbetet syftar även till att presentera presumtiva tillämpningar inom en stålindustri, därför kommer förslag till applikationer framföras. I resultatdelen av arbetet presenteras i huvudsak uppbyggnaden av en objekdetekteringsapplikation som hanterar personsäkerhet och i diskussionsdelen framhävs vidare förslag till applikationer. Detta avses lägga grund för eventuell implementation i verkliga produktionsutrustningar i framtiden. / As Industry 4.0 sweeps across today's industries, applications within artificial intelligence (AI) are developing. A relatively new application that is commonly called AI-vision or sometimes Computer-vision, in this study the term AI-vision is used. The application is about making computers and machines visually inclined. With this, an intelligent model is trained that can make decisions based on visual data, such as image and video. The orientation in this study within AI-Vision, is to highlight object detection and image classification. Object detection defines as follows, one or more specific objects are detected from an image of several complex lines and shapes. The technology is used in a variety of applications such as robot navigation and automatic vehicle control. The purpose of image classification, sometimes called image recognition, is to classify and categorize the image by identifying and sorting essential data. This in attempt to ascertain what the image itself represents. In order to frame this work in an appropriate way, the main quest of this thesis is to describe how techniques such as Object Detection and Image Classification models are constructed. Explain the underlying intelligence in the models as well as what tools and methods are used to create these models. As the thesis also alludes to present prospective applications in a steel industry, proposals of specific applications will be presented. The results section mainly presents an Object Detection application that handles personal safety and drafts to applications is presented in the discussion section. This work intends to contribute for possible implementation in production equipment in the future.

Page generated in 0.0435 seconds