• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle cracking damage evolution in 7075 wrought aluminum alloy under monotonic and cyclic loading conditions

Harris, James Joel 22 November 2005 (has links)
7xxx series Al-Zn-Mg-Cu-base wrought Al-alloy products are widely used for aerospace structural applications where monotonic and cyclic mechanical properties are of prime concern. Microstructure of these commercial alloys usually contains brittle coarse constituent particles or inclusions of Fe-rich intermetallic compounds and Mg2Si, typically in the size range of 1 to 50 micron. Plastic deformation and fracture of 7xxx series alloys (as well as of numerous other wrought Al-alloys) is associated with gradual microstructural damage accumulation that involves cracking of the coarse constituent particles, growth of voids around the cracked particles, and the void coalescence. To understand and model the microstructural damage evolution processes such particle cracking, quantitative microstructural data associated with the damage nucleation are required under monotonic as well as cyclic loading conditions. In the past quantitative characterization of particle cracking damage in these alloys has been problematic. However, with recent advances in digital image analysis and stereology based techniques, it is now possible to quantitatively characterize the damage nucleation in hot-rolled 7075(T6) Al-alloy (a typical alloy of 7xxx series) due to cracking of the Fe-rich coarse constituent particles. The objectives of this work are: * Quantitative characterization of the cracking of Fe-rich constituent particles as a function of strain under quasi-static loading. This involves measurements of number density of cracked particles, volume fraction of the cracked particles, their size, shape, and orientation distribution, as well as nearest neighbor distribution and two-point correlation functions to quantify spatial dispersion of the cracked particles in a series of interrupted uniaxial tensile test specimens at different strain levels. * Quantitative characterization of the cracking of Fe-rich constituent particles under cyclic loading to study the differences between the particle cracking damage due to monotonic and cyclic loading.
2

Study of the Effect of Laser Shock Peening on Corrosion Behavior of Aluminum Alloy 7075

Aravamudhan, Boopa Nandhini 30 October 2018 (has links)
No description available.
3

Developing Response Surfaces Based on Tool Geometry for a Convex Scrolled Shoulder Step Spiral (CS4) Friction Stir Processing Tool Used to Weld AL 7075

Nielsen, Bryce K. 12 March 2009 (has links) (PDF)
The purpose of this study is to develop a series of response surfaces that define critical outcomes for welding in Al 7075 based on the tool geometry of a convex scrolled shoulder step spiral (CS4) friction stir processing tool. These response surfaces will be used to find critical minimums in forces which will decrease the required power input for the process. A comprehensive parameterization of the tool geometry is defined in this paper. A pilot study was performed to determine the feasibility of varying certain geometric features. Then a screening experiment eliminated those geometric features that were not as significant in determining the response surfaces. A central composite design with the five most important geometric features was used in order to develop response surfaces for nine different response variables. The nine response variables are the longitudinal, lateral and axial forces; the tool temperature, the spindle torque, the amount of flash, the presence of defects, the surface roughness and the ledge size. By using standard regression techniques, response surface equations were developed that will allow the user to optimize tool geometries based on the desired response variables. The five geometric features, the process parameters and several of their interactions were found to be highly significant in the response surfaces.
4

Analysis And Design For Aluminum Forging Process

Ozturk, Huseyin 01 December 2008 (has links) (PDF)
Aluminum forging products has been increasingly used in automotive and aerospace industry due to their lightness and strength. In this study, aluminum forging processes of a particular industrial part for the two different alloys (Al 7075 and Al 6061) have been analyzed. The forging part, forging process and the required dies have been designed according to the aluminum forging design parameters. The proposed process has been simulated by using the Finite Volume Method. In the simulations, analysis of the part during forging process has been performed / and the required forging force, the temperature distribution and the effective stress distribution in the parts have been obtained. The forging dies were produced in the METU-BILTIR Center CAD/CAM Laboratory. The experimental study has been performed in the METU-BILTIR Center Forging Research and Application Laboratory. The parts were produced without any defects as obtained in the finite volume simulations. The results of the experiment and finite volume simulation are compared and it has been observed good agreement.
5

Fatigue life validation of aircraft materials

Ramesh, Aashish, Kalkur, Gaurav January 2020 (has links)
Fatigue is one of the critical design aspects with immense significance where thefatigue life of a material can be stated as the number of cycles that a componentcan withstand under a particular type of loading without failure. The design processhas to include fatigue analysis in order to predict failure due to fatigue. This helpsin maintenance and servicing of a component reducing the chance of failure duringoperation of the component. Increased efficiency of predictive maintenance improvesthe life of the component.This thesis aims to study the relationship between the experimental, analytical andnumerical solutions of two high strength aluminium alloys and one steel alloy fortheir life in aircraft applications covering the effects of geometrical irregularities. Italso aims to answer convergence between the numerical and the analytical methodwhen compared with each other. The simulations are carried out for three materialsamong many used in aircraft and industrial applications (Al 7050-T7451, Al 7075-T6 and AISI 4340 Steel) for a pre-defined set of geometries. The stress field andthe stress concentration factor variations are also studied to identify their effects onfatigue life.The results from this work forms a strong background for the future research alongside SAAB or any other industries using these materials for their structures to findout the failure or predicting it accurately. Also, integral structures can be analysedin detail using this thesis as a base.
6

Repair of Aluminum Alloy Aerospace Components and Cold Gas Dynamic Spray Flow Distribution Study

Nastic, Aleksandra January 2015 (has links)
Aluminum alloys have been used for decades in aircraft as they offer a wide range of properties explicitly developed to provide a set of characteristics adapted to structural and non-structural components. However, aircraft components inevitably undergo degradation during service due to their extensive use and exposure to harsh environments. Typical repair methods are either not efficient for large scale repairs due to their low material growth rate, not suitable for field repair or involve the use of high process temperatures. The present research aims at evaluating the cold gas dynamic spray (CGDS) as a potential repair technology to restore Al7075-T6 nose landing gear steering actuator threads found on the Boeing 757 aircraft. Moreover, it studies the suitability of using cold spray to deposit Al2024 material. The influence of process parameters and substrate surface preparation on the material deposition efficiency and resulting microstructural and mechanical repair properties is also evaluated.

Page generated in 0.0335 seconds