• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1838
  • 561
  • 341
  • 178
  • 84
  • 66
  • 66
  • 66
  • 66
  • 66
  • 65
  • 48
  • 25
  • 25
  • 25
  • Tagged with
  • 4126
  • 741
  • 620
  • 531
  • 509
  • 423
  • 422
  • 412
  • 391
  • 367
  • 357
  • 331
  • 312
  • 307
  • 306
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Electrical transport properties and magnetism of Cr-Mo-Ru alloys

High, Grant Lysle 23 July 2014 (has links)
M.Sc. / Please refer to full text to view abstract.
312

Characterisation of dissimilar friction stir welds between 5754 Aluminium alloy and C11000 copper

Akinlabi, Esther Titilayo January 2010 (has links)
Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in 1991, for joining ferrous and non-ferrous materials1. The FSW of Aluminium and its alloys has been commercialised; and recent interest is focused on joining dissimilar materials. However, in order to commercialise the process, research studies are required to characterise and establish process windows. This research work through material characterisation of the welded joints establishes a process window for the Friction Stir welding of 5754 Aluminium Alloy and C11000 Copper. Furthermore, preliminary studies83,85 on the FSW of aluminium and copper have revealed the presence of intermetallic compounds which are detrimental to the weld qualities. This research work is also aimed at establishing process parameters that will result in limited or no intermetallic formation in the weld. The joint integrity of the resulting welds will also be correlated with the input process parameters. Based on the preliminary investigations conducted, a final weld matrix consisting of twenty seven welds was produced by varying the rotational speed between 600 and 1200 rpm, and the feed rate between 50 and 300 mm/min using three different shoulder diameter tools – 15, 18 and 25 mm to compare the heat input into the welds and to achieve the best results. The welds were characterised through microstructural evaluation, tensile testing, microhardness profiling, X-Ray Diffraction analysis, electrical resistivity and statistical analysis – in order to establish the interrelationship between the process parameters and the weld qualities. viii Microstructural evaluation of the weld samples revealed that the interfacial regions are characterised by mixture layers of aluminium and copper; while 33 percent of the tensile samples are within the acceptable range (> 75 percent joint efficiency). High Vickers microhardness values were measured at the joint interfaces, which corresponded with the intermetallic compounds. The Energy Dispersive Spectroscopy analysis revealed the presence of thin layers of intermetallics in nanoscale at the interfacial regions. The diffractograms of the X-Ray Diffraction analysis showed small peaks for intermetallics in some of the welds. Low electrical resistivities were measured at the joint interfaces. The statistical analysis showed that the downward vertical force, (Fz) can significantly influence the resulting weld qualities. An overall summary of the analysis of the weld qualities - with respect to the shoulder diameter tools employed showed that the 18 mm shoulder diameter tool is most appropriate among the three shoulder diameters considered, and a process window of medium spindle speed of 950 rpm and low-to-medium feed rate between 50 and 150 mm/min is established for FSW of Aluminium and Copper. Welds produced at 1200 rpm and 300 mm/min with low heat input did not have intermetallics formed at the joint interface.
313

Magnesium Alloy Particulates used as Pigments in Metal-Rich Primer System for AA2024 T3 Corrosion Protection

Xu, Hong January 2011 (has links)
As an alternative to the present toxic chromate-based coating system now in use, the Mg-rich primer technology has been designed to protect Al alloys (in particular Al 2024 T3) and developed in analogy to Zn-rich primers for steel substrate. As an expansion of this concept, metal-rich primer systems based on Mg alloy particles as pigments were studied. Five different Mg alloy pigments, AM60, AZ91B, LNR91, AM503 and AZG, were characterized by using the same epoxy-polyamide polymer as binder, a same dispersion additive and the same solvent. Different Mg alloy-rich primers were formulated by varying the Mg alloy particles and their pigment volume concentrations (PVC). The electrochemical performance of each Mg alloy-rich primer after the cyclic exposure in Prohesion chamber was investigated by electrochemical impedance Spectroscopy (EIS). The results indicated that all the Mg alloy-rich primers could provide cathodic protection for AA 2024 T3 substrates. However, the Mg alloys as pigments in metal-rich primers seemed to exhibit the different anti-corrosion protection performances, such as the barrier properties, due to the different properties of these pigments. In these investigations, multiple samples of each system were studied and statistical methods were used in analyzing the EIS data. From these results, the recommendation for improved EIS data analysis was made. CPVC studies were carried out on the Mg alloy-rich primers by using three Mg alloy pigments, AM60, AZ91B and LNR91. A modified model for predicting CPVC is proposed, and the results showed much better agreement between the CPVC values obtained from the experimental and mathematical methods. Using the data from the AM60 alloy pigment system, an estimate of experimental coarseness was done on a coating system, the first time such an estimate has been performed. By combining various surface analysis techniques, such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and confocal Raman microscopy, the oxidation products formed after exposure were identified. It was found that variation of Al content in Mg alloy could significantly affect the pH of the microenvironment in the primer films and result in the formation of various oxidation products. / Air Force Office of Scientific Research (Grant No. 49620-02-1-0398)
314

Magnesium Alloy Particulates Used as Pigments in Metal-Rich Primer System for AA2024 T3 Corrosion Protection

Xu, Hong January 2010 (has links)
As an alternative to the present toxic chromate-based coating system now in use, the Mg-rich primer technology has been designed to protect A1 alloys (in particular A1 2024 T3) and developed in analogy to Zn-rich primers for steel substrate. As an expansion of this concept, metal-rich primer systems based on Mg alloy particles as pigments were studied. Five different Mg alloy pigments. AM60, A719B, LNR91, AM503 and AZG, were characterized by using the same epoxy-polyamide polymer as binder, a same dispersion additive and the same solvent. Different Mg alloy-rich primers were formulated by varying the Mg alloy particles and their pigment volume concentrations (PVC). The electrochemical performance of each Mg alloy-rich primer alter the cyclic exposure in Prohesion chamber was investigated by electrochemical impedance Spectroscopy (EIS). The results indicated that all the Mg alloy-rich primers could provide cathodic protection for AA 2024 T3 substrates. However, the Mg alloys as pigments in metal-rich primers seemed to exhibit the different anti-corrosion protection performances, such as the barrier properties, due to the different properties of these pigments. In these investigations, multiple samples of each system were studied and statistical methods were used in analyzing the EIS data. From these results. the recommendation for improved EIS data analysis was made. CPVC studies were carried out on the Mg alloy-rich primers by using three Mg alloy pigments, AM60, A2918 and LNR91. A modified model for predicting CPVC is proposed, and the results showed much better agreement between the CPVC values obtained from the experimental and mathematical methods. Using the data from the AM60 alloy pigment system, an estimate of experimental coarseness was done on a coating system, the first time such an estimate has been performed. By combining various surface analysis techniques, such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and confocal Raman microscopy, the oxidation products formed alter exposure were identified. It was found that variation of A1 content in Mg alloy could significantly affect the pH of the microenvironment in the primer films and result in the formation of various oxidation products. / Air Force Office of Scientific Research (AFOSR) (Grant No. 49620-02-1-0398)
315

Magnetic properties of amorphous metallic alloys

Zobin, David January 1976 (has links)
No description available.
316

Crystal growth and photoconductivity of tellurium and selenium-tellurium alloys

Shih, Ishiang January 1981 (has links)
No description available.
317

Thermodynamic properties of liquid cadmium-bismuth-lead-tin solutins.

Hurkot, Donald Glen. January 1972 (has links)
No description available.
318

Oxidation and carburization of Fe-Cr and Ni-Cr alloys at 850 and 950̊C in CO/CO2 gas

Colwell, Jeffrey Alan January 1979 (has links)
No description available.
319

A wet method for analyzing gold-silver alloys of high gold content /

Shank, Lowell William January 1966 (has links)
No description available.
320

The determination of thermodynamic properties by mass spectrometry in the Ni-Co, Co-Cr, Ni-Cr and Ni-Co-Cr systems /

McCormack, James Michael January 1971 (has links)
No description available.

Page generated in 0.0367 seconds