• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imagens ALOS para o mapeamento da vegetação arbórea e outros usos do solo em área de floresta ombrófila mista

Luz, Juliana da 19 June 2013 (has links)
O presente estudo teve como objetivo principal avaliar o uso de diferentes algoritmos classificadores em imagens do satélite ALOS para mapeamento do uso do solo e classes de vegetação em um fragmento de Floresta Ombrófila Mista. Como objetivo secundário foram aplicadas e analisadas quatro diferentes técnicas de fusão para as imagens PRISM (2,5 metros de resolução espacial) e AVNIR-2 (10 metros), utilizando três e quatro bandas. As técnicas utilizadas foram as seguintes: HSV, Color normalized (CN), Gram-Schmidt Spectral Sharpening e Principal Components Spectral Sharpening. Para as classificações foram utilizados os algoritmos supervisionados Bhattacharya e Árvore de Decisão (C4.5). A área de estudo foi a Reserva Florestal Embrapa/Epagri localizada no Município de Caçador, SC. Na classificação por árvore de decisão foi utilizado um aplicativo para a geração do conjunto de regras da árvore, o software WEKA e um aplicativo de processamento de imagens, o software ENVI, para a classificação digital (RSI, 2005). Foram utilizadas 61 variáveis (13 espectrais e 48 de textura) representadas em 317 amostras de treinamento de 3 x 3 pixels cada uma. Quando da classificação por Bhattacharya (algoritmo de classificação por crescimento de regiões implementado no software SPRING) foi necessário primeiramente realizar a segmentação da imagem para posterior uso das regiões como amostras de treinamento para a classificação. Devido à limitação do software em processar 61 bandas conjuntamente no processo de segmentação, a técnica Análise de Cluster foi empregada para a seleção de seis bandas representativas do conjunto de dados. Na análise visual e no teste de fidelidade espectral, as técnicas de fusão que apresentaram melhores resultados foram as Componentes Principais e Gram-Schmidt. No teste de transferência de detalhes as quatro técnicas de fusão se mostraram apropriadas. No resultado das classificações o algoritmo que apresentou melhor acurácia foi a Árvore de Decisão, apresentando valor de coeficiente Kappa de 0,966 e acurácia geral de 97% em comparação com o Bhattacharya, que respectivamente apresentou os seguintes valores: 0,755 e 79%. Apesar da técnica Árvore de Decisão apresentar um coeficiente Kappa superior, sua classificação se mostrou com aparência de “salt and pepper”, com pixels isolados, assemelhando-se a uma imagem com ruído, ao contrário da classificação por regiões.

Page generated in 0.3664 seconds