• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of AICAR Treatment on Sarcoplasmic Reticulum Function and Possible Links to Skeletal Muscle Fatigue

Vidt, Stacey Elizabeth 19 June 2007 (has links)
A compelling mystery in the study of exercise is mechanisms of skeletal muscle fatigue. Broadly described, muscle fatigue is the uncomfortable sensation that particular muscle groups are shutting down and muscle force production cannot continue. More specifically, muscle fatigue is defined as an activity-induced inability to continue to produce a desired level of force. Several groups suggest that a major cause of force loss during fatigue is reductions in the rates of sarcoplasmic reticulum (SR) calcium (Ca2+) release and uptake. These changes result in diminished contractile machinery activation, reduced force production and slowed relaxation. During exercise, adenosine 5'-triphosphate (ATP) is the energy currency that is used to support force production. As a result of ATP hydrolysis and re-synthesis, adenosine diphosphate (ADP) and adenosine monophosphate (AMP) levels rise. AMP kinase (AMPK) is an enzyme that becomes activated as a result of increased AMP levels. It is thought to function as a metabolic "master switch" within the muscle and plays a major role in carbohydrate and fat metabolism. Once AMPK is activated it regulates several ATP consuming and producing pathways. The overall objective of this project was to determine if increased metabolism during exercise contributes to SR Ca2+ dysfunction during fatigue. If this is true, artificial activation of AMPK via 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) should induce changes in SR function that are qualitatively similar to those caused by fatigue. In study 1, mice were injected with 0.85 mg/kg AICAR (or saline solution) and both gastrocnemius muscles were removed one hour later. In study 2, EDL muscles were placed in a muscle bath and incubated in AICAR (4mM) or stimulated to fatigue. Glycogen, glucose-6-phosphate (G-6-P), ATP, ADP, and phosphocreatine (PCr) were examined in all groups of muscles. Alterations in SR calcium uptake and release rates due to the presence of AICAR were also studied as a likely cause of muscle fatigue. AICAR treatment in vivo did not alter muscle glycogen, glucose, ATP, ADP or PCr concentrations. However, G-6-P levels were increased by 137%. This was accompanied by a 36% reduction in the SR Ca2+ uptake rate and a 42% reduction in Ca2+-stimulated Ca2+ ATPase activity as well as 13-15% reductions in the rates of Ca2+ release. These changes were not associated with SR Ca2+ pump content. Administration of AICAR in vitro also increased G-6-P content (200%) without altering the concentrations of glycogen, glucose, G-6-P, ATP, ADP or PCr. AICAR decreased SR Ca2+ uptake rate by 28% and the rate of Ca2+ release by 16%. For comparison, fatiguing stimulation reduced the rates of SR Ca2+ uptake and release by 31 and 41%, respectively. Taken together, these results indicate that when administered to skeletal muscle both in vivo and in vitro, AICAR evokes metabolic stress. More importantly, activation of AMPK alters skeletal muscle SR function to an extent that is qualitatively similar to that caused by fatiguing activity. At present, it is not clear how AMPK activation causes changes in SR function. However, the present finding is consistent with the notion that metabolic stress caused by exercise, affects SR function. This, in turn, leads to force loss but reduces energy demand and protects the cell from ATP depletion during maximal contractile activity. / Master of Science
2

AMPK as a Novel Target for Treatment of Neuropathic and Post-Surgical Pain

Tillu, Dipti Vilas January 2014 (has links)
Chronic pain is a major health problem affecting more than 1.5 billion people worldwide. Specifically, neuropathic pain and chronic post-surgical pain are debilitating clinical conditions with few efficacious treatments, warranting development of novel therapeutics. Starting with the hypothesis that dysregulated translation regulation pathways may underlie these pain states, we demonstrated that there is a major reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity and increased phosphorylation of mTOR and ERK downstream targets in these persistent pain states. We also hypothesized that activators of AMP-activated protein kinase (AMPK) may represent a novel treatment avenue for the treatment of neuropathic and incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. The AMP activated protein kinase (AMPK) activators, metformin, resveratrol and A769662, inhibited translation regulation signaling pathways in sensory neurons, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. We have further demonstrated that local injection of resveratrol, metformin or A769662 and topical application of resveratrol, a potent AMPK activator, into the hindpaw following plantar incision dose-relatedly reverses incision-mediated mechanical hypersensitivity as well as hyperalgesic priming induced by incision. In addition, co-treatment with systemic metformin and local resveratrol at individually sub-efficacious doses at the time of incision blocked acute hypersensitivity and hyperalgesic priming suggesting potential super-additive effects of combined AMPK activator use. These results highlight the importance of signaling to translation control in peripheral sensitization of nociceptors and provide further evidence for activation of AMPK as a novel treatment avenue for acute and chronic pain states.
3

The Effects of AICAR and Rapamycin on Mitochondrial Function in Immortalized Mitochondrial DNA Mutator Murine Embryonic Fibroblasts

Delic, Vedad, Noble, Kenyaria, Zivkovic, Sandra, Phan, Tam Anh, Reynes, Christian, Zhang, Yumeng, Phillips, Oluwakemi, Claybaker, Charles, Ta, Yen, Dinh, Vinh B., Cruz, Josean, Prolla, Tomas A., Bradshaw, Patrick C. 01 January 2018 (has links)
Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.
4

Régulation du métabolisme énergétique cardiaque par l’AMP kinase : Implication dans l’insuffisance cardiaque et effet du sexe biologique / Regulation of cardiac energetic metabolism by AMP kinase : Regarding heart failure and biological sex effect

Grimbert, Lucile 08 November 2019 (has links)
L’AMPK est un senseur métabolique qui phosphoryle de nombreux substrats afin de maintenir l’homéostasie énergétique cellulaire. Dans le cœur, un rôle protecteur de l’AMPK a été montré dans des modèles pathologiques, néanmoins la spécificité cardiaque, métabolique et sexuelle des effets protecteurs de l’AMPK n’a pas été complètement élucidée. Nous avons donc généré un modèle de souris invalidées pour l’AMPKalpha2, l’isoforme majoritaire dans le cœur. Cette délétion est induite spécifiquement dans le cœur et à l’âge adulte après injection de tamoxifène. A l’état basal, la délétion de l’AMPKalpha2 a induit une dysfonction systolique progressive du ventricule gauche et le développement d’une fibrose cardiaque uniquement chez les souris mâles. Seize semaines après induction de la délétion, ces altérations cardiaques sont associées à une diminution de la respiration mitochondriale initiée par le complexe I de la chaîne respiratoire qui pourrait être liée au réarrangement des espèces de cardiolipides et à l’augmentation de la proportion de complexe I non intégré dans des supercomplexes observés chez ces souris mâles KO. Ces effets induits par la délétion de l’AMPKalpha2 ne sont pas observés chez les femelles KO mais la fibrose cardiaque et le remodelage des cardiolipides ont été retrouvés chez des souris femelles KO ayant subi une ovariectomie. Ces résultats montrent aussi une implication de l’AMPK dans la régulation de la fibrose cardiaque et de la composition en cardiolipides de la membrane mitochondriale et mettent également en avant un dimorphisme sexuel qui pourrait être en partie dû aux hormones femelles. Une étude comparable dans un modèle pathologique est en cours d’analyse afin de préciser les effets cardioprotecteurs de l’AMPK. / AMPK is a metabolic sensor which phosphorylates a various number of substrates in order to maintain cellular energetic homeostasis. In the heart, a protective role of AMPK has been demonstrated in pathological models, nevertheless the tissue, the metabolic and the sexual specificity of those effects has not been fully investigated. Thus, we generated a mice model of AMPKalpha2 deletion, the major cardiac isoform, specifically induced in the heart and at adult age after tamoxifen injection. At basal condition, AMPKalpha2 deletion lead to a progressive systolic dysfunction of the left ventricle and to the development of fibrosis only in males. Sixteen weeks after the deletion induction, these alterations were associated to a decrease of the mitochondrial respiration initiated by complex I of the observed in these KO male mice respiratory chain which could be linked to a cardiolipin species remodeling and to an increase of complex I proportion which is not integrated in supercomplexes. These effects induced by AMPKalpha2 deletion were not observed in KO female mice; however the cardiac fibrosis and the cardiolipins remodeling were found in KO female mice with ovariectomy. These last results tend to confirm an involvement of AMPK in fibrosis regulation and membrane cardiolipin composition and highlight a sexual dimorphism which could be due to female hormones. Analysis of a similar study in a pathological model is ongoing in order to specify the AMPK cardioprotective effects.
5

Effet de l'activation de l'AMPK sur le métabolisme des lipoprotéines chez la souris

Gaougaou, Ghizlane 05 1900 (has links) (PDF)
L'activation de l'« Adenosine monophosphate activated protein kinase » (AMPK), enzyme clé de la régulation du métabolisme énergétique, permet une inhibition de certaines enzymes limitantes du métabolisme des acides gras et du cholestérol. Le 5-aminoimidazole-4carboxiamide-1-β-D-ribofuranoside (AICAR) et la metformine, médicaments largement utilisés pour activer l'AMPK, améliorent l'hyperglycémie, augmentent la captation du glucose périphérique et favorisent l'utilisation et la dégradation des acides gras, ce qui permet la diminution des risques du développement de maladies cardiovasculaires liées au diabète. L'étude de certains effets de l'activation de l'AMPK sur le métabolisme lipidique serait essentielle pour pouvoir mieux comprendre l'interaction entre les métabolismes lipidique et glucidique. L'objectif de ce travail était de savoir si, in vivo, le métabolisme des lipoprotéines réagit à l'activation de l'AMPK. Le traitement des souris avec 0,5 mg/g de poids corporel d'AICAR ou de metformine pendant 7 ou 14 jours a permis d'observer notamment pour le traitement à l'AICAR pendant 14 jours, une diminution de 17,5% du cholestérol plasmatique, de 21,1% du cholestérol associé aux HDL et une augmentation de 47,6% du cholestérol associé aux LDL. L'activation de l'AMPK a augmenté le niveau protéique de récepteurs des lipoprotéines de faible densité (rLDL) suite à l'augmentation de son facteur de transcription « sterol regulatory element binding protein 2 » (SREBP-2) et a diminué celui de SR-BI « Scavenger receptor class B type I » et de sa protéine adaptatrice PDZK1. Les taux protéiques de SR-BI et du rLDL corrélaient avec ceux de leurs ARNm. La protéine SR-BII a augmenté probablement pour contrebalancer la diminution de SR-BI. La diminution de l'expression de SR-BI a provoqué une diminution de 37% de la captation sélective des EC des lipoprotéines de haute densité (HOL) in vivo chez la souris traitée avec 0,5 mg/g de poids corporel d'AICAR. Les protéines ABCA1 (intervenant dans l'efflux de cholestérol vers les HDL) et HNF4a (responsable de l'expression de l'apoA-I qui compose les HDL) ont diminué et seraient peut-être responsables de la diminution du cholestérol associé aux HDL. L'ARNm de PCSK9 « Proprotein convertase subtilisin/kexin type 9 » a augmenté. De plus, ni l'augmentation de rLDL ni la diminution de SR-BI n'ont pu expliquer l'augmentation du taux de cholestérol associé aux LDL. Au niveau du foie, principal tissu responsable du métabolisme de lipoprotéines, des diminutions de 26% des triglycérides et de 13,4% du cholestérol ont été observées. L'activation de l'AMPK semble donc améliorer le bilan lipidique du foie ainsi que celui du cholestérol plasmatique. Toutefois, la diminution du cholestérol associé aux HDL et l'augmentation de celui associé aux LDL apparaissent défavorables en termes de risque d'événements cardiovasculaires. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : AMPK, récepteurs hépatiques, captation sélective, LDL-EC, lipides hépatiques.
6

INHIBITION OF CHOLESTEROL SYNTHESIS BY POLICOSANOL

Banerjee, Subhashis 01 January 2010 (has links)
Cholesterol is an essential component of the cell, but excessive blood levels are a major risk factor for the development of atherosclerotic plaques that can lead to heart disease and stroke, the foremost cause of premature death in Western societies. Policosanol, a mixture of very long chain alcohols derived from sugarcane, has gained considerable attention among the public as safe and effective means to reduce blood cholesterol levels, a belief based on some early clinical studies. My research investigates one possible mechanism by which policosanol might decrease blood cholesterol levels: the inhibition of cholesterol synthesis in the liver. Previous studies with cultured hepatoma cells have indicated that policosanol suppresses HMG-CoA reductase activity, the regulatory step in cholesterol synthesis, by activation of AMP-kinase, which then inactivates HMG-CoA reductase by phosphorylation. My studies have confirmed this activation of AMP-kinase both in hepatoma cells and in whole animals after intragastric administration of policosanol. The present studies were also undertaken to identify the upstream signaling mechanism by which policosanol activates AMP-kinase. Treatment of rat hepatoma cells with policosanol increased the amount of phosphorylated CaMKK, which can directly activate AMP-kinase, but had only a small effect on LKB1, the principal activator of AMP-kinase. Intragastric administration to mice similarly activated CaMKK, but not LKB1, in the liver. To determine if metabolism of policosanol was necessary for activation of AMP-kinase, siRNA-mediated suppression of fatty aldehyde dehydrogenase, fatty acyl CoA synthase-4, or β-ketothiolase in hepatoma cells prevented the phosphorylation of AMP-kinase and HMG-CoA reductase by policosanol, indicating that metabolism of these very long chain alcohols to fatty acids and subsequent peroxisomal β-oxidation is necessary for the suppression of cholesterol synthesis. As the principal product of fatty acid -oxidation is acetyl-CoA, further studies demonstrated that addition of acetate to cells similarly activated AMP-kinase and inactivated HMG-CoA reductase. This finding argues that the activation of AMP-kinase by policosanol results from the generation of excess acetyl-CoA via peroxisomal metabolism. Finally, although the intestine is a significant source of circulating cholesterol, policosanol was unable to activate AMP-kinase in the small intestine. These findings open new perspectives for the control of cholesterol synthesis by activators of AMP-kinase.
7

Implication de la protéine kinase AMP-dépendante dans le contrôle de la masse musculaire : régulation de l’autophagie / Implication of AMP-activated protein kinase in the control of skeletal muscle mass : regulation of autophagy.

Sanchez, Anthony 10 January 2012 (has links)
Le contrôle de la masse musculaire est sous la dépendance d'un équilibre entre les processus de synthèse et de dégradation. Sur le plan cellulaire, deux voies signalétiques majeures sont impliquées : la voie des facteurs de transcription de la famille FoxO qui contrôle l'expression des gènes impliqués dans les systèmes de dégradation (système ubiquitine-protéasome et autophagie), et la voie IGF-1/Akt/mTORC1 qui représente la voie majeure de la synthèse protéique. Nos travaux mettent en évidence, sur des cellules musculaires le rôle de la protéine kinase AMP-dépendante (AMPK) qui inhibe l'activité de la voie mTOR et régule les systèmes ubiquitine-protéasome et autophagiques de manière FoxO3 dépendante. Une nouvelle cible de l'AMPK a également été identifiée : la protéine Ulk1 qui possède une fonction clé dans l'activation de l'autophagie. Par ailleurs, nous avons montré le rôle centraldu facteur d'initiation à la traduction eIF3f dans l'induction de l'hypertrophie, et dans l'augmentation de l'activité de la voie mTORC1 associée. De plus, nous montrons que la surexpression d'un mutant d'eIF3f résistant à la dégradation est associée à une protection effective contre l'atrophie. / Skeletal muscle mass is depending upon a dynamic balance between anabolic and catabolic processes. At a cellular level, two major signaling pathways are involved: the transcription factors FoxO related pathway, implicated in the control of protein breakdown systems(ubiquitin-proteasome system and autophagy), and the IGF-1/Akt/mTORC1 pathway associated with the canonic pathway of protein synthesis. We show in muscle cells that theAMP-activated protein kinase (AMPK) decreases the mTORC1 pathway activity and simulate subiquitin-proteasome and autophagy systems in a FoxO3-dependant manner. Furthermore,we identify Ulk1 as a new interacting partner of AMPK, which plays a major role in the autophagy induction. Moreover, we demonstrate the key role of the eukaryotic translation initiation factor eIF3f in hypertrophy induction and in the associated increase of the mTORC1activity. In addition, we show that the overexpression of an eIF3f mutant resistant to the degradation is associated with a protection against muscle atrophy.

Page generated in 0.05 seconds