• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 48
  • 48
  • 48
  • 48
  • 19
  • 11
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation

Mancini, S.J., White, A.D., Bijland, S., Rutherford, C., Graham, D., Richter, E.A., Viollet, B., Touyz, R.M., Palmer, Timothy M., Salt, I.P. 11 November 2016 (has links)
yes / Inflammation of adipose tissue in obesity is associated with increased IL-1β, IL-6 and TNF-α secretion and proposed to contribute to insulin resistance. AMP-activated protein kinase (AMPK) regulates nutrient metabolism and is reported to have anti-inflammatory actions in adipose tissue, yet the mechanisms underlying this remain poorly characterised. The effect of AMPK activation on cytokine-stimulated proinflammatory signalling was therefore assessed in cultured adipocytes. AMPK activation inhibited IL-1β-stimulated CXCL10 secretion, associated with reduced interleukin-1 receptor associated kinase-4 (IRAK4) phosphorylation and downregulated MKK4/JNK and IKK/IκB/NFκB signalling. AMPK activation inhibited TNF-α-stimulated IKK/IκB/NFκB signalling but had no effect on JNK phosphorylation. The JAK/STAT3 pathway was also suppressed by AMPK after IL-6 stimulation and during adipogenesis. Adipose tissue from AMPKα1−/− mice exhibited increased JNK and STAT3 phosphorylation, supporting suppression of these distinct proinflammatory pathways by AMPK in vivo. The inhibition of multiple pro-inflammatory signalling pathways by AMPK may underlie the reported beneficial effects of AMPK activation in adipose tissue. / British Heart Foundation
2

The effect of metformin-induced AMPK activation on adipogenesis and HIV replication

Alexandre, Kabamba Bankoledi 08 April 2008 (has links)
ABSTRACT Metformin is the most common drug used against type 2 diabetes mellitus. However, it was only recently shown, in human and rat hepatocytes, that metformin-like 5-aminoimidazole-4-carboximide ribonucleoside (AICAR), acts via activation of the AMP-activated protein kinase (AMPK), an enzyme that plays a central role in lipid metabolism. Although it is well known that metformin is used in the treatment of type 2 diabetes and results in significant fat loss, no study has investigated the effects of this drug on adipocytes. In this report I studied the effects of metformin on the formation of fat deposits in mouse 3T3-L1 preadipocytes, as well as its effects on the activation of AMPK in these cells. Our results suggested that metformin significantly inhibits the transformation of pre-adipocytes into adipocytes. This is achieved via the inhibition of intracellular lipid accumulation during adipogenesis. In addition to its inhibition of intracellular lipid accumulation, metformin induced a significant increase in the phosphorylation of AMPK. It has been shown that AMPK activation with AICAR results in the inhibition of the nuclear factor-κB (NF-κB) induced gene expression. Since NF-κB is the key nuclear factor used by HIV-1 during the initiation of its gene transcription, I investigated the possibility of inhibiting HIV-1 replication in U1 cells with metformin and AICAR. I observed that AICAR and metformin inhibit HIV-1 replication in U1 cells. This inhibition wasparalleled by the accumulation of NF-κB in the cytoplasm of AICAR and metformin treated cells, and at the same time by a significant decrease in the concentration of this nuclear factor in the nucleus of these cells. However, I failed to observe any phosphorylation of AMPK by metformin and AICAR in U1 cells. In conclusion, metformin inhibits adipogenesis in mouse adipocytes and this inhibition is likely to take place via the activation of AMPK. AICAR and metformin have inhibitory properties against HIV-1 replication. However, this inhibition does not seem to be by the activation of AMPK.
3

Myeloid AMPK in Atherosclerosis: Therapeutic Potential and Associated Mechanisms

LeBlond, Nicholas 13 October 2020 (has links)
Atherosclerosis propagates when innate immune cells, myeloid-derived macrophages, undergo unregulated uptake of cholesterol-rich modified low-density lipoproteins (LDL). Excess storage and retention of this cholesterol leads to development of lipid-laden macrophage foam cells, that accumulate within the intima of arteries as developing plaque. Formation of atherosclerotic lesions reduces blood flow and can further lead to more serious complications such as myocardial infarction, stroke, and cardiovascular disease. AMP-activated protein kinase (AMPK), a master regulator of cellular energetics, has been shown to participate in many anti-atherogenic pathways within myeloid cells such as (but not limited to) the inhibition of cholesterol synthesis and stimulation of reverse cholesterol transport. However, a recent report described a pro-atherogenic role for myeloid AMPK, showing it is expression required for myeloid cell recruitment and longevity within the atherosclerotic microenvironment. Despite this, multiple reports all corroborate describing a protective role for systemic pharmacological AMPK activation. We sought to determine the consequence of modified LDL variants in myeloid AMPK signaling and to further clarify the role of myeloid AMPK signaling within atherosclerosis. In cultured macrophages primed with modified LDL variants underwent AMPK activation, which was also associated with increased markers of autophagy. In an in vivo model of intermediate atherosclerosis, we observed that neither myeloid AMPK expression nor systemic AMPK-activating therapy influenced lesion myeloid content, necrosis, or autophagic markers. Furthermore, despite a suggestive trend, both myeloid AMPK and AMPK-therapy did not significantly influence lesion size in male or female mice. Interestingly, we found that in animals lacking AMPK signaling to only one substrate, HMGCR (the rate limiting enzyme in cholesterol synthesis), knock-in mice developed accelerated atherosclerosis when compared to their wild-type littermate. Furthermore, we determined that AMPK signaling to HMGCR in the hematopoietic compartment alone is enough to protect against atherogenesis. Taken together, these studies show the benefit of interrogating specific AMPK-regulated pathways in the context of atherosclerosis, and sheds light on the benefit of utilization of single point mutation knock-in models opposed to global or cell type-specific knockout models for investigations into AMPK within atherosclerosis.
4

Étude fonctionnelle de l'AMP-activated protein kinase chez l'huître creuse Crassostrea gigas / Elements implicated in the energypathway of the AMP-activated protein kinase of the Pacific oyster Crassostrea gigas

Guévélou, Éric 19 December 2012 (has links)
L’objectif de cette thèse était de caractériser les éléments appartenant à la voie de signalisation énergétique AMP-activated protein kinase chez l’huître creuse Crassostrea gigas afin de comprendre son implication dans la gestion de l’énergie, en particulier en réponse à des conditions physiologiques qui sollicitent de l’énergie telles que la reproduction, ou à des stress environnementaux comme l’hypoxie ou le jeûne. Au niveau génomique, les trois sous-unités constitutives du trimère AMPK ainsi que plusieurs éléments impliqués dans cette voie de signalisation et dans les métabolismes glucidiques et lipidiques, potentiellement cibles de l’AMPK, ont été décrits. Au niveau protéique, plusieurs anticorps hétérologues ciblant les isoformes de la sous-unité α et la phosphorylation du résidu thréonine 172 de la sous-unité α, témoin indirect de l’activité AMPK, ont été utilisés. Deux sous-unités α tronquées dans le domaine kinase ont été caractérisées principalement dans les tissus musculaires suggérant leurs implications dans la fonction musculaire. Au cours d’un stress hypoxique, une augmentation significative des quantités de sous-unités α tronquées a été observée dans le muscle lisse. Ce résultat suggère que pendant une durée d’au moins 6 h, ces protéines tronquées sont nécessaires au maintien du métabolisme aérobie dans le muscle lisse, lui permettant ainsi de remplir son rôle de fermeture statique des valves. Nous avons suggéré une hypothèse indiquant que l’accumulation in vivo de ces sous-unitésα tronquées pourrait exercer un rôle de modulation ou de transdomination négative de l’activité de la sous-unité α entière. Dans la gonade, nous avons observé une activation de l’AMPK tout au long du processus de gamétogénèse afin de supporter les processus cataboliques de création de gamètes. Une diminution de cette activation a été observée lors du stade anabolique de mise en réserve des ovocytes. Enfin, lors d’un conditionnement en milieu contrôlé, une approche physiologique par privation de nourriture et une approche pharmacologique par injection d’AICAR ont été réalisées pour provoquer une modulation de l’AMPK. Les analyses ont montré que ni le jeûne ni l’AICAR n’ont induit une augmentation de la phosphorylation de la sous-unité α. Cependant, plusieurs changements liés à l’injection de l’AICAR ont été observés sur la physiologie de l’huître : la modification du rapport AMP:ATP chez les huîtres nourries en comparaison aux huîtres à jeun, et une mortalité dépendante de la dose injectée d’AICAR chez les huîtres mises à jeun. La caractérisation de l’AMPK chez C. gigas ouvre de nombreuses perspectives exigeant des études fonctionnelles poussées afin de démontrer le rôle pivot de cette kinase dans la gestion de l’énergie, comme démontré chez de nombreuses espèces de vertébrés, et ainsi décrypter le métabolisme énergétique de l’huître. / The objective of this thesis was to characterize elements implicated in the energypathway of the AMP-activated protein kinase of the Pacific oyster Crassostrea gigas. Thecharacterization of the elements was performed in the scope of understanding their involvementin energy management, particularly in response to physiological conditions requiring energy, asreproduction or environmental stress, such as hypoxia or fasting.At genomic level, the three subunits of AMPK trimer and several elements involved inAMPK signaling pathway and in carbohydrate and lipid metabolism, supposedly under AMPKcontrol, were described. Additionally, at proteomic level, several heterologous antibodiestargeting AMPKα subunit isoforms and threonine 172 phosphorylation site of AMPKα subunit,indirect witness of AMPK activity, were assayed. Two truncated α subunits in the kinase domainwere characterized essentially in muscles, suggesting their involvement in muscle function.During a hypoxic stress, a significant increase of truncated α subunits protein amount wasobserved in smooth muscle. These results suggest that, for a period of at least 6 h, thesetruncated subunits are necessary for the maintenance of aerobic metabolism in smooth muscle ofC. gigas, allowing it to fulfill its static closing valves. We suggested that in vivo accumulation oftruncated AMPKα could serve as modulator or as transdominant negative regulator of the fulllengthAMPKα activity. In the gonad, AMPK appeared to be activated through the process ofgametogenesis, in order to support the catabolic processes of gametes creation. During theanabolic phase, when oocyte reserves were created, a signal disruption was observed. Finally,during controlled experiment, a physiological approach by food deprivation and apharmacological approach using AICAR injections were performed to modulate AMPK signal.This analysis showed that neither fasting nor AICAR induced an increase of AMPKphosphorylation, as expected. Although, several changes related to AICAR injection wereobserved in oysters physiology, such as the change of the AMP:ATP ratio in fed oysters and aAICAR dose-related mortality in fasting oysters. AMPK characterization in C. gigas opens newperspectives demanding extensive functional studies to establish the key role of AMPK in energymanagement, as demonstrated in vertebrates’ species, in order to understand the oyster’s energymetabolism.
5

Regulation of AMPA receptor acetylation and translation by SIRT2 and AMPK: the molecular mechanisms and implications in memory formation

Wang, Guan 07 December 2016 (has links)
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated glutamatergic ion channels that mediate most excitatory neurotransmission in the brain. Alterations in AMPAR synaptic accumulation mediate synaptic plasticity, including long-term potentiation, long-term depression and homeostatic synaptic plasticity. AMPAR abundance in neurons is determined by balanced processes of protein translation and degradation. Changes in AMPAR function and trafficking have direct impacts on synaptic transmission and cognitive functions. However, the molecular mechanisms regulating AMPAR expression and dynamics in neurons remain largely unknown. In this thesis, two molecular mechanisms that regulate AMPAR translation and protein stability through two different signaling pathways, 5' adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 2 (SIRT2), are described. It is shown that SIRT2, a NAD+-dependent protein deacetylase, directly controls AMPAR stability by regulating AMPAR acetylation. For the first time, we discovered that AMPARs are subject to lysine acetylation, a novel form of post-translational modification for glutamate receptors. Under basal conditions, AMPARs are highly acetylated at their intracellular C termini, which protects against ubiquitination to antagonize AMPAR endocytosis and degradation, leading to prolonged receptor half-life. SIRT2 is also identified as the enzyme responsible for AMPAR deacetylation. Knockdown of SIRT2 led to elevated AMPAR acetylation and reduced ubiquitination, and consequently, increased AMPAR levels and synaptic transmission. SIRT2 knockout mice displayed weakened synaptic plasticity and impaired learning and memory. Resveratrol is a phytoalexin that has been shown to increase AMPAR expression and synaptic accumulation in neurons. The resveratrol effect on AMPAR expression is independent of sirtuin 1, the conventional target of resveratrol, but rather is mediated by AMPK and its downstream phosphoinositide 3-kinase (PI3K)/Akt pathway. Application of the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), to neurons mimics the effects of resveratrol on both signaling and AMPAR expression. The resveratrol-induced increase in AMPAR expression results from elevated protein synthesis through the AMPK-PI3K pathway activation. These studies describe novel regulatory mechanisms responsible for the control of AMPAR protein amount and subcellular distribution in neurons, providing insights into our understanding of synaptic plasticity, brain function and neurological disorders. / 2017-12-06T00:00:00Z
6

How cellular ATP/ADP ratios and reactive oxygen species affect AMPK signalling

Hinchy, Elizabeth January 2017 (has links)
Mitochondria are key generators of cellular ATP, vital to complex life. Historically, mitochondrial generation of reactive oxygen species (ROS) was considered to be an unregulated process, produced by dysfunctional mitochondria. More recently, mitochondrial ROS generated by complex I, particularly by the process of reverse electron transfer (RET), has emerged as a potentially biologically relevant signal that is tightly-regulated and dependent on mitochondrial status. ROS production by RET is reported to play a role in the innate immune response and lifespan extension in fruit flies. One way in which mitochondrial ROS may behave as a signal is by altering the activity of AMP-activated protein kinase (AMPK), a key metabolic sensor and regulator of cell metabolism, which is activated when cellular ATP levels decrease during energy demand. Mitochondria can signal to AMPK via the magnitude of the cellular ATP/AMP and ATP/ADP ratios, which alter in response to mitochondrial function. Our view is mitochondria may also signal to AMPK via ROS. Important studies have helped to clarify the role of exogenous or cytosolic ROS in AMPK regulation. However, the effects of mitochondrial ROS on AMPK activity, specifically that generated by complex I, remain unclear and is the main focus of this thesis. I characterized the effects of exogenous H2O2 on cellular AMPK activity, ATP/ADP ratios and cellular redox state in a cell model. I then compounded this with selective mitochondria generated ROS by the mitochondria-targeted redox-cycler, MitoParaquat (MPQ). AMPK activity appeared to correlate with decreasing cell ATP/ADP ratios, indicating that both sources of ROS primarily activate AMPK in an AMP/ADP-dependent mechanism. In parallel, I developed an approach for analyzing the redox state of candidate proteins, an important step in determining if a protein is directly regulated by ROS. I also initiated development of a cell model for studying the downstream effects of mitochondrial ROS production by RET, by expressing alternative respiratory enzymes in a mammalian cell line.
7

Metabolic effects of coffee components on rat skeletal muscle in the resting and contracting states ―Evidence for 5’AMP-activated protein kinase activation, glucose metabolism enhancement, and ergogenic effect― / コーヒー成分が安静時および収縮時のラット骨格筋に及ぼす代謝的効果 ―AMPキナーゼ活性化、糖代謝促進および運動機能増進作用の検証―

Tsuda, Satoshi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22533号 / 人博第936号 / 新制||人||223(附属図書館) / 2019||人博||936(吉田南総合図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 林 達也, 教授 石原 昭彦, 教授 久代 恵介 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
8

Evidence for acute activation of 5'-AMP-activated protein kinase by metformin and salicylate in rat skeletal muscles / ラット骨格筋におけるメトホルミン及びサリチル酸によるAMPキナーゼの急性的活性化に関する検討

Oshima, Rieko 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第19057号 / 人博第710号 / 新制||人||171(附属図書館) / 26||人博||710(吉田南総合図書館) / 32008 / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 林 達也, 教授 森谷 敏夫, 教授 石原 昭彦 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
9

AMP-activated protein kinase kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance trained rats

Hurst, Denise 18 July 2007 (has links) (PDF)
This study was designed to examine activity of AMP-activated protein kinase kinase (AMPKK) and AMP-activated protein kinase (AMPK) in muscles from control (C) and endurance trained (T) rats. Rats were trained 5 days/wk, 2 hr/d for 8 wks at a final intensity of 32 m/min up a 15% grade with 30 second sprints at 52 m/min every 10 min. Gastrocnemius muscles were stimulated in situ in T and C rats for 5 min at frequencies of 0.4/sec and 1/sec. Gastrocnemius LKB1 protein, a putative component of the AMPKK complex (LKB1, STRAD, and MO25), increased approximately 2-fold in response to training. Phosphorylation of AMPK determined by western blot was increased at both stimulation rates in both control and trained rats. AMPK activity of both the α1 and α2 isoforms (immunoprecipitates) also increased at both stimulation rates in both C and T rats. AMPKK activity was strikingly lower in both resuspended polyethylene glycol (PEG) precipitates and 1200 x g supernatant of the crude homogenate of muscle extracts from the trained compared to control rats. AMPKK activity did not increase in either T or C in response to electrical stimulation even though phospho-AMPK did increase. Interestingly, AMPKK activity in the 1200 x g supernatant of the crude homogenate actually decreased upon stimulation in the control rats. These results suggest that AMPKK is activated during electrical stimulation by mechanisms other than covalent modification. Possibilities include AMP-induced optimization of the phosphorylation site on the target protein, contraction-induced changes in undefined allosteric modulators, and contraction-induced association with other proteins. (Study approved by the IACUC and supported by NIH RO1 AR41438.)
10

Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487

Heathcote, H.R., Mancini, S.J., Strembitska, A., Jamal, K., Reihill, J.A., Palmer, Timothy M., Gould, G.W., Salt, I.P. January 2016 (has links)
The key metabolic regulator, AMP-activated protein kinase (AMPK) is reported to be downregulated in metabolic disorders, but the mechanisms are poorly characterised. Recent studies have identified phosphorylation of the AMPKα1/α2 catalytic subunit isoforms at Ser487/491 respectively as an inhibitory regulation mechanism. Vascular endothelial growth factor (VEGF) stimulates AMPK and protein kinase B (Akt) in cultured human endothelial cells. As Akt has been demonstrated to be an AMPKα1 Ser487 kinase, the effect of VEGF on inhibitory AMPK phosphorylation in cultured primary human endothelial cells was examined. Stimulation of endothelial cells with VEGF rapidly increased AMPKα1 Ser487 phosphorylation in an Akt-independent manner, without altering AMPKα2 Ser491 phosphorylation. In contrast, VEGF-stimulated AMPKα1 Ser487 phosphorylation was sensitive to inhibitors of protein kinase C (PKC) and PKC activation using phorbol esters or overexpression of PKC stimulated AMPKα1 Ser487 phosphorylation. Purified PKC and Akt both phosphorylated AMPKα1 Ser487 in vitro with similar efficiency. PKC activation was associated with reduced AMPK activity, as inhibition of PKC increased AMPK activity and phorbol esters inhibited AMPK, an effect lost in cells expressing mutant AMPKα1 Ser487Ala. Consistent with a pathophysiological role for this modification, AMPKα1 Ser487 phosphorylation was inversely correlated with insulin sensitivity in human muscle. These data indicate a novel regulatory role of PKC to inhibit AMPKα1 in human cells. As PKC activation is associated with insulin resistance and obesity, PKC may underlie the reduced AMPK activity reported in response to overnutrition in insulin-resistant metabolic and vascular tissues.

Page generated in 0.0882 seconds