• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 11
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developmental Regulation and Function of AMPA Receptor Subunits in Chicken Lumbar Motoneurons

Ni, Xianglian 02 October 2009 (has links)
Ca2+ influx through ionotropic glutamate receptors regulates a variety of developmental processes including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits into the receptors. Although Ca2+-permeable AMPA receptors are a familiar feature in developing neurons, the developmental function of these receptors during the formation of the nervous system has yet to be established. This study was designed to investigate the expression and functional role of Ca2+-permeable AMPA receptors in developing chicken spinal motoneurons. Our results demonstrate that chicken lumbar motoneurons express functional AMPA receptors as early as embryonic day (E) 5. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2+ permeability of AMPA receptors between E6 and E11. During this developmental period, the Ca2+ permeability of AMPA receptors decreases three-fold. Reduction in the Ca2+ permeability of AMPA receptors is accompanied by increased expression of GluR2 mRNA in the spinal motoneuron pool. Changes in GluR2 mRNA expression occur in parallel to changes in GluR2 protein expression in the chicken ventral spinal cord. Changes in the Ca2+-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. At early stages of development, functional AMPA receptors were composed of a combination of GluR3 and GluR4 subunits. mRNA analysis indicates that GluR4 is the most abundant subunit in the chicken ventral spinal cord between E6 and E11. Immunohistochemistry analysis of spinal cord sections also demonstrated that both GluR3 and GluR4 proteins are expressed at E6 and E11. Expression of Ca2+-permeable AMPA receptors regulates the maturation of dendritic outgrowth in developing spinal motoneurons. Measurements of dendritic length and branching pattern demonstrate significant changes in the dendritic morphology of spinal motoneurons between E6 and E11. Blockade of AMPA receptor activation with CNQX between E5 and E8 causes a significant increase in dendritic outgrowth in lumbar motoneurons, when compared with vehicle-treated embryos. Treatment of chicken embryos with CNQX between E8 and E11, when AMPA receptors become Ca2+-impermeable, has no affect on dendritic morphology. However, blockade of NMDA receptor activation with MK-801 causes a significant reduction in dendritic outgrowth of lumbar motoneurons by E11. These findings indicate that AMPA receptor activation between E5 and E8 limits dendritic outgrowth in developing motoneurons, whereas NMDA receptor activation is involved in dendritic remodeling after the establishment of synaptic contacts with sensory afferents.
2

A Single Alcohol Pre-exposure Alters Dorsolateral Striatal AMPA Receptor Dependent Binge and Compulsive-like Drinking

Bauer, Meredith R. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Background Compulsive alcohol drinking is a defining characteristic of alcohol use disorder and the dorsolateral striatum (DLS) is implicated in regulating this inflexible behavior. AMPA receptors have been implicated in both goal-directed (dorsomedial striatal dependent) and DLS dependent inflexible behaviors with antagonism in the DLS and general DLS inhibition altering inflexible behavior including habit and compulsion. Discrepancies exist in the preclinical models used to investigate compulsive-like alcohol. The purpose of these experiments was to establish a robust model of compulsive-like quinine adulterated alcohol (QuA) drinking in C57BL/6J male and female mice, assess associated AMPA receptor protein expression in the dorsal striatum, and to antagonize DLS AMPA receptors during compulsive-like QuA drinking using a model of binge-like alcohol drinking, Drinking-in-the-Dark (DID). Methods In aim 1, C57BL/6J mice were allowed free access to 20% (v/v) alcohol (alcohol history), or water (water history) for two hours each day beginning three hours into the dark cycle for 23 days. On days 15 and 22 mice were given QuA to test for compulsive-like QuA drinking. 24-hours following the last DID session brain slices were taking for DLS and DMS AMPA receptor western blot. In aim 2, C57BL/6J mice were given a total of 21 days alcohol history, to establish a compulsive-like phenotype, or water history, prior to infusion. On days 22 and 24 mice were given a bilateral infusion of one of three concentrations of NBQX, an AMPA receptor antagonist, into the DLS, immediately prior to DID where the DID solution was either alcohol or QuA. Results We found that three weeks, not two, is sufficient to produce robust compulsive-like QuA drinking in C57BL/6J mice. We failed to replicate our compulsive-like DID model in aim 2 and found that infusion of NBQX reduced 2-hour alcohol drinking and reduced 2-hour QuA drinking when QuA was the second solution presented on infusion days in male water history mice only. We also found that NBQX reduced 20-minute front-loading in female alcohol history mice on alcohol intake and trended toward QuA intake. Overall locomotor activity was affected by drug infusions. Conclusions Together, these data suggest that compulsive-like alcohol drinking can be achieved following three-weeks DID and DLS infusion of NBQX reduces both alcohol and QuA drinking in a sex and drinking history dependent way, and these effects may be reliant on an initial single QuA or alcohol exposure.
3

Molecular mechanism of long-term depression and its role in experience-dependent ocular dominance plasticity of primary visual cortex

Xiong, Wei 05 1900 (has links)
Primary visual cortex is a classic model to study experience-dependent brain plasticity. In early life, if one eye is deprived of normal vision, there can be a dramatic change in the ocular dominance of the striate cortex such that the large majority of neurons lose responsiveness to the deprived eye and, consequently, the ocular dominance distribution shifts in favor of the open eye. Interestingly, the visual experience dependent plasticity following monocular deprivation (MD) occurs during a transient developmental period, which is called the critical period. MD hardly induces ocular dominance plasticity beyond critical period. The mechanisms underlying ocular dominance plasticity during the critical period are not fully understood. It has been proposed that long-term depression (LTD) may underlie the loss of cortical neuronal responsiveness to the deprived eye. However, discordant results have been reported in terms of the role of LTD and LTP in visual plasticity due to the lack of specific blockers. Here we report the prevention of the normally-occurring ocular dominance (OD) shift to the open eye following MD by using a specific long-term depression (LTD) blocking peptide derived from the GluR2 subunit of the a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor (AMPAR). We were able to prevent the shift of OD to the open eye with systemic or local administration of the GluR2 peptide. Both electrophysiological and anatomical approaches were taken to demonstrate the peptide effect. Moreover, enhancing LTD with D-serine, a NMDA receptor co-agonist, brought back the ocular dominance plasticity in adult mice subject to four-day MD and, therefore, reopened the critical period. Our data indicate that LTD plays an essential role in visual plasticity during the critical period and the developmental regulation of LTD may account for the closure of critical period in adult. In an additional study, we have found anisomycin, a protein synthesis inhibitor, produces a time-dependent decline in the magnitude of the field EPSP (fEPSP) in mouse primary visual cortex and that this anisomycin-mediated fEPSP depression occludes NMDA receptor dependent LTD. In contrast, another two protein synthesis inhibitors, emetine and cycloheximide, have no effect either on baseline synaptic transmission and or on LTD. We propose that anisomycin-LTD might be mediated by p38 MAP kinase since anisomycin is also a potent activator of the P38/JNK MAPK pathway. In agreement with notion, the decline of the fEPSP caused by anisomycin can be rescued by the application of the P38 inhibitor SB203580, but not by the JNK inhibitor SP600125. The occlusion of LFS-LTD by anisomycin-induced fEPSP decline suggests that common mechanisms may be shared between the two forms of synaptic depression. Consistent with this view, bath application of the membrane permeant peptide discussed above, which specifically blocks regulated AMPA receptor endocytosis, thereby preventing the expression of LFS-LTD, prior to anisomycin treatment significantly reduced the anisomycin-induced decline of the fEPSP. In conclusion, this study indicates that anisomycin produces long-lasting depression of AMPA receptor-mediated synaptic transmission by activating P38 MAPK-mediated endocytosis of AMPA receptors in neonatal mouse visual cortex.
4

Spatiotemporal Kinetics of AMPAR Trafficking in Single Spines

Patterson, Michael Andrew January 2010 (has links)
<p>Learning and memory is one of the critical components of the human experience. In one model of memory, hippocampal LTP, it is believed that the trafficking of AMPA receptors to the synapse is a fundamental process, yet the spatiotemporal kinetics of the process remain under dispute. In this work, we imaged the trafficking of AMPA receptors by combining two-photon glutamate uncaging on single spines with a fluorescent reporter for surface AMPA receptors. We found that AMPA receptors are trafficked to the spine at the same time as the spine size is increasing. Using a bleaching protocol, we found that the receptors that reach the spine come from a combination of the surface and endosomal pools. Imaging exocytosis in real time, we found that the exocytosis rate increases briefly (~1 min.), both in the spine and neighbouring dendrite. Finally, we performed pharmacological and genetic manipulations of signaling pathways, and found that the Ras-ERK signaling pathway is necessary for AMPAR exocytosis.</p> <p>In a set of related experiments, we also investigated the capacity of single spines to undergo potentiation multiple times. By stimulating spines twice using glutamate uncaging, we found that there is a refractory period for synaptic plasticity in spines during which they cannot further be potentiated. We furthermore found that inducing plasticity in a given spine inhibits plasticity at nearby spines.</p> / Dissertation
5

Molecular mechanism of long-term depression and its role in experience-dependent ocular dominance plasticity of primary visual cortex

Xiong, Wei 05 1900 (has links)
Primary visual cortex is a classic model to study experience-dependent brain plasticity. In early life, if one eye is deprived of normal vision, there can be a dramatic change in the ocular dominance of the striate cortex such that the large majority of neurons lose responsiveness to the deprived eye and, consequently, the ocular dominance distribution shifts in favor of the open eye. Interestingly, the visual experience dependent plasticity following monocular deprivation (MD) occurs during a transient developmental period, which is called the critical period. MD hardly induces ocular dominance plasticity beyond critical period. The mechanisms underlying ocular dominance plasticity during the critical period are not fully understood. It has been proposed that long-term depression (LTD) may underlie the loss of cortical neuronal responsiveness to the deprived eye. However, discordant results have been reported in terms of the role of LTD and LTP in visual plasticity due to the lack of specific blockers. Here we report the prevention of the normally-occurring ocular dominance (OD) shift to the open eye following MD by using a specific long-term depression (LTD) blocking peptide derived from the GluR2 subunit of the a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor (AMPAR). We were able to prevent the shift of OD to the open eye with systemic or local administration of the GluR2 peptide. Both electrophysiological and anatomical approaches were taken to demonstrate the peptide effect. Moreover, enhancing LTD with D-serine, a NMDA receptor co-agonist, brought back the ocular dominance plasticity in adult mice subject to four-day MD and, therefore, reopened the critical period. Our data indicate that LTD plays an essential role in visual plasticity during the critical period and the developmental regulation of LTD may account for the closure of critical period in adult. In an additional study, we have found anisomycin, a protein synthesis inhibitor, produces a time-dependent decline in the magnitude of the field EPSP (fEPSP) in mouse primary visual cortex and that this anisomycin-mediated fEPSP depression occludes NMDA receptor dependent LTD. In contrast, another two protein synthesis inhibitors, emetine and cycloheximide, have no effect either on baseline synaptic transmission and or on LTD. We propose that anisomycin-LTD might be mediated by p38 MAP kinase since anisomycin is also a potent activator of the P38/JNK MAPK pathway. In agreement with notion, the decline of the fEPSP caused by anisomycin can be rescued by the application of the P38 inhibitor SB203580, but not by the JNK inhibitor SP600125. The occlusion of LFS-LTD by anisomycin-induced fEPSP decline suggests that common mechanisms may be shared between the two forms of synaptic depression. Consistent with this view, bath application of the membrane permeant peptide discussed above, which specifically blocks regulated AMPA receptor endocytosis, thereby preventing the expression of LFS-LTD, prior to anisomycin treatment significantly reduced the anisomycin-induced decline of the fEPSP. In conclusion, this study indicates that anisomycin produces long-lasting depression of AMPA receptor-mediated synaptic transmission by activating P38 MAPK-mediated endocytosis of AMPA receptors in neonatal mouse visual cortex.
6

Mechanism underlying the maturation of AMPA receptors in zebrafish

Aroonassala Patten, Shunmoogum Unknown Date
No description available.
7

Mechanism underlying the maturation of AMPA receptors in zebrafish

Aroonassala Patten, Shunmoogum 11 1900 (has links)
Glutamate AMPA receptors (AMPARs) are major excitatory receptors in the vertebrate CNS. In many biological systems there are changes in the properties of AMPARs during development that are essential for providing an increase in efficiency of information transfer between neurons and a refinement of motor co-ordination and sensory perception and cognition. It is not surprising that improper development or loss of function of AMPARs can lead to many neurological disorders such as epilepsy and amyotrophic lateral sclerosis. Thus, determining the mechanisms by which AMPARs mature is of particular importance. The objectives of my thesis were to characterize the developmental changes in AMPAR-mediated currents in zebrafish Mauthner cells and to determine the mechanisms underlying any changes. The major findings reported in this thesis are that (1) there are developmental changes in the properties of AMPAR-currents as the Mauthner cell matures; (2) the mechanism underlying these changes is a switch in the composition of AMPA receptor subtypes; and (3) PKC is necessary for the developmental switch in AMPAR subtypes from slow receptors to fast receptors. These findings provide valuable insights into the mechanism underlying the development of AMPARs. In addition, they provide the first instance of a signalling link (PKC) required for the developmental subunit switch and the developmental speeding of AMPAR kinetics. / Physiology, Cell Biology and Developmental Biology
8

Molecular mechanism of long-term depression and its role in experience-dependent ocular dominance plasticity of primary visual cortex

Xiong, Wei 05 1900 (has links)
Primary visual cortex is a classic model to study experience-dependent brain plasticity. In early life, if one eye is deprived of normal vision, there can be a dramatic change in the ocular dominance of the striate cortex such that the large majority of neurons lose responsiveness to the deprived eye and, consequently, the ocular dominance distribution shifts in favor of the open eye. Interestingly, the visual experience dependent plasticity following monocular deprivation (MD) occurs during a transient developmental period, which is called the critical period. MD hardly induces ocular dominance plasticity beyond critical period. The mechanisms underlying ocular dominance plasticity during the critical period are not fully understood. It has been proposed that long-term depression (LTD) may underlie the loss of cortical neuronal responsiveness to the deprived eye. However, discordant results have been reported in terms of the role of LTD and LTP in visual plasticity due to the lack of specific blockers. Here we report the prevention of the normally-occurring ocular dominance (OD) shift to the open eye following MD by using a specific long-term depression (LTD) blocking peptide derived from the GluR2 subunit of the a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor (AMPAR). We were able to prevent the shift of OD to the open eye with systemic or local administration of the GluR2 peptide. Both electrophysiological and anatomical approaches were taken to demonstrate the peptide effect. Moreover, enhancing LTD with D-serine, a NMDA receptor co-agonist, brought back the ocular dominance plasticity in adult mice subject to four-day MD and, therefore, reopened the critical period. Our data indicate that LTD plays an essential role in visual plasticity during the critical period and the developmental regulation of LTD may account for the closure of critical period in adult. In an additional study, we have found anisomycin, a protein synthesis inhibitor, produces a time-dependent decline in the magnitude of the field EPSP (fEPSP) in mouse primary visual cortex and that this anisomycin-mediated fEPSP depression occludes NMDA receptor dependent LTD. In contrast, another two protein synthesis inhibitors, emetine and cycloheximide, have no effect either on baseline synaptic transmission and or on LTD. We propose that anisomycin-LTD might be mediated by p38 MAP kinase since anisomycin is also a potent activator of the P38/JNK MAPK pathway. In agreement with notion, the decline of the fEPSP caused by anisomycin can be rescued by the application of the P38 inhibitor SB203580, but not by the JNK inhibitor SP600125. The occlusion of LFS-LTD by anisomycin-induced fEPSP decline suggests that common mechanisms may be shared between the two forms of synaptic depression. Consistent with this view, bath application of the membrane permeant peptide discussed above, which specifically blocks regulated AMPA receptor endocytosis, thereby preventing the expression of LFS-LTD, prior to anisomycin treatment significantly reduced the anisomycin-induced decline of the fEPSP. In conclusion, this study indicates that anisomycin produces long-lasting depression of AMPA receptor-mediated synaptic transmission by activating P38 MAPK-mediated endocytosis of AMPA receptors in neonatal mouse visual cortex. / Medicine, Faculty of / Graduate
9

The role of L-type voltage-gated calcium channels in hippocampal CA1 neuron glutamate and GABA-A receptor-mediated synaptic plasticity following chronic benzodiazepine administration

Xiang, Kun 13 June 2007 (has links)
No description available.
10

Development of chemical and chemogenetic tools for elucidating glutamate receptor function / グルタミン酸受容体機能解明を目指した化学および化学遺伝学的手法の開発

Ojima, Kento 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23923号 / 工博第5010号 / 新制||工||1782(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 浜地 格, 教授 森 泰生, 教授 秋吉 一成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0532 seconds