• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 11
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Rab3A as a modulator of homeostatic synaptic plasticity

Koesters, Andrew G. 29 August 2014 (has links)
No description available.
22

Investigating the role of AMPAkines in an animal model of post-traumatic stress disorder (PTSD) / Eugene Hamlyn

Hamlyn, Eugene January 2008 (has links)
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder affecting cognitive function. 1 in 4 individuals exposed to a life-threatening event may develop PTSD, which is characterised by symptoms of hyperarousal, avoidance and intrusions. Although treatment is effective in most cases, the response is far from satisfactory. It is now clear that novel drug treatment and a better understanding of the neurobiology of PTSD are necessary if we are to realise a better response and treatment outcome in these patients. Glutamatergic pathways play an important role in cognition, while recent studies have emphasized a causal role for glutamate in PTSD, and of the potential value of glutamate receptor modulators in treating the disorder. Stress-related elevation in glutamate exerts detrimental effects on cognition, especially via activation of the N-methyl-D-aspartate (NMDA) receptor, and has been implicated in PTSD associated cognitive deficits. Recently, the cr-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor has been found to exert a modulatory action on NMDA receptor function. Ampakines are positive allosteric modulators of the AMPA receptor, and have demonstrated beneficial effects in animal models of learning as well as antidepressant action, and to improve short-term memory in humans. The aims of this study were firstly to study the effects of the ampakine, Org 26576, on spatial memory performance in healthy male Sprague-Dawley rats. Secondly, since PTSD is associated with pronounced deficits in cognition, we studied the ability of Org 26576 to modify stress-evoked spatial memory deficits in rats subjected to single prolonged stress (SPS), a putative animal model of PTSD. In both cases, neuroreceptor studies were performed to determine any relationship between hippocampal and cortical NMDA receptor binding characteristics and effects on spatial memory performance. After exposure of the animals to either normal handling or SPS conditions, spatial memory performance was assessed using a 5 day memory acquisition and consolidation protocol in a modified version of the Morris water maze (MWM). Experimental and control groups both received either saline (1 ml/kg i.p.) or Org 26576 at incremental doses of 1, 3 or 10 mg/kg intraperitoneally twice daily for 12 days. Separate groups of animals were used for the neuroreceptor studies, except that behavioural testing was not performed. 24hrs after drug treatment discontinuation, the animals were sacrificed and frontal cortex and hippocampus removed for NMDA receptor binding analysis. In normal rats, Org 26576 3 mg/kg and 10 mg/kg exerted a short-lasting reduction in escape latency on day 1, but which lost prominence over the subsequent training days. Org 26576 1, 3 and 10 mg/kg, however, significantly improved spatial memory retrieval on day 5. No changes in frontal cortical or hippocampal NMDA receptors were observed. Contrary to expected, rats subjected to SPS failed to express noteworthy deficits in spatial memory as previously described. Treatment of SPS-exposed animals with Org 26576 did not significantly alter spatial learning evident in SPS animals on day 1 of acquisition training, as well as on subsequent training days. Org 26576 1 mg/kg increased spatial memory retrieval compared to the unstressed saline control, but not compared to the SPS group. Org 26576 only at a dose of 1 mg/kg decreased cortical, but not hippocampal NMDA receptor density (Bmax) in SPS animals versus unstressed but not saline treated SPS animals. No changes in receptor affinity (Kd) were noted. Org 26576 therefore improves early initial spatial learning in healthy rats, but exerts a lesser effect on memory consolidation over the remainder of the training period. However, Org 26576 significantly improves retrieval of spatial memory without simultaneous changes in frontal cortical and hippocampal NMDA receptor binding. Org 26576 thus may benefit both short-term and long-term memory processes in normal animals without effects on limbic NMDA receptor binding, and provides a rationale for testing in conditions that present with cognitive disturbances. However, the SPS model failed to engender marked deficits in spatial memory performance; this result ultimately complicated the interpretation of the combined stress-drug treatment studies. Studies in healthy animals therefore conclude that Org 26576 is an effective agent to enhance long-term memory processes and should be investigated further for its possible application in disorders of cognition. Although the value of Org 26576 in an animal model of PTSD were inconclusive, further studies in SPS and other PTSD models, as well as models of relevance for schizophrenia, Alzheimer's disease and depression, are encouraged. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2009.
23

Investigating the role of AMPAkines in an animal model of post-traumatic stress disorder (PTSD) / Eugene Hamlyn

Hamlyn, Eugene January 2008 (has links)
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder affecting cognitive function. 1 in 4 individuals exposed to a life-threatening event may develop PTSD, which is characterised by symptoms of hyperarousal, avoidance and intrusions. Although treatment is effective in most cases, the response is far from satisfactory. It is now clear that novel drug treatment and a better understanding of the neurobiology of PTSD are necessary if we are to realise a better response and treatment outcome in these patients. Glutamatergic pathways play an important role in cognition, while recent studies have emphasized a causal role for glutamate in PTSD, and of the potential value of glutamate receptor modulators in treating the disorder. Stress-related elevation in glutamate exerts detrimental effects on cognition, especially via activation of the N-methyl-D-aspartate (NMDA) receptor, and has been implicated in PTSD associated cognitive deficits. Recently, the cr-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor has been found to exert a modulatory action on NMDA receptor function. Ampakines are positive allosteric modulators of the AMPA receptor, and have demonstrated beneficial effects in animal models of learning as well as antidepressant action, and to improve short-term memory in humans. The aims of this study were firstly to study the effects of the ampakine, Org 26576, on spatial memory performance in healthy male Sprague-Dawley rats. Secondly, since PTSD is associated with pronounced deficits in cognition, we studied the ability of Org 26576 to modify stress-evoked spatial memory deficits in rats subjected to single prolonged stress (SPS), a putative animal model of PTSD. In both cases, neuroreceptor studies were performed to determine any relationship between hippocampal and cortical NMDA receptor binding characteristics and effects on spatial memory performance. After exposure of the animals to either normal handling or SPS conditions, spatial memory performance was assessed using a 5 day memory acquisition and consolidation protocol in a modified version of the Morris water maze (MWM). Experimental and control groups both received either saline (1 ml/kg i.p.) or Org 26576 at incremental doses of 1, 3 or 10 mg/kg intraperitoneally twice daily for 12 days. Separate groups of animals were used for the neuroreceptor studies, except that behavioural testing was not performed. 24hrs after drug treatment discontinuation, the animals were sacrificed and frontal cortex and hippocampus removed for NMDA receptor binding analysis. In normal rats, Org 26576 3 mg/kg and 10 mg/kg exerted a short-lasting reduction in escape latency on day 1, but which lost prominence over the subsequent training days. Org 26576 1, 3 and 10 mg/kg, however, significantly improved spatial memory retrieval on day 5. No changes in frontal cortical or hippocampal NMDA receptors were observed. Contrary to expected, rats subjected to SPS failed to express noteworthy deficits in spatial memory as previously described. Treatment of SPS-exposed animals with Org 26576 did not significantly alter spatial learning evident in SPS animals on day 1 of acquisition training, as well as on subsequent training days. Org 26576 1 mg/kg increased spatial memory retrieval compared to the unstressed saline control, but not compared to the SPS group. Org 26576 only at a dose of 1 mg/kg decreased cortical, but not hippocampal NMDA receptor density (Bmax) in SPS animals versus unstressed but not saline treated SPS animals. No changes in receptor affinity (Kd) were noted. Org 26576 therefore improves early initial spatial learning in healthy rats, but exerts a lesser effect on memory consolidation over the remainder of the training period. However, Org 26576 significantly improves retrieval of spatial memory without simultaneous changes in frontal cortical and hippocampal NMDA receptor binding. Org 26576 thus may benefit both short-term and long-term memory processes in normal animals without effects on limbic NMDA receptor binding, and provides a rationale for testing in conditions that present with cognitive disturbances. However, the SPS model failed to engender marked deficits in spatial memory performance; this result ultimately complicated the interpretation of the combined stress-drug treatment studies. Studies in healthy animals therefore conclude that Org 26576 is an effective agent to enhance long-term memory processes and should be investigated further for its possible application in disorders of cognition. Although the value of Org 26576 in an animal model of PTSD were inconclusive, further studies in SPS and other PTSD models, as well as models of relevance for schizophrenia, Alzheimer's disease and depression, are encouraged. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2009.
24

The temporal dynamics of Arc expression regulate cognitive flexibility

Wall, M.J., Collins, D.R., Chery, S.L., Allen, Z.D., Pastuzyn, E.D., George, A.J., Nikolova, V.D., Moy, S.S., Philpot, B.D., Shepherd, J.D., Muller, Jurgen, Ehlers, M.D., Mabb, A.M., Corrêa, Sonia A.L. 31 May 2018 (has links)
Yes / Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasomedependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. / Open access funded by Biotechnology and Biological Sciences Research Council
25

AMPA receptor stabilization mediated by non-canonical Wnt signaling protects against Aβ42 oligomers synaptotoxicity / La stabilisation des récepteurs AMPA médiée par une signalisation Wnt non canonique protège de la synaptotoxicité des oligomères Aβ42

Montecinos, Carla 22 November 2018 (has links)
Les récepteurs AMPAR sont les principaux responsables de la transmission excitatrice rapide dans le système nerveux central, y compris dans les neurones d’hippocampe étudiés ici. Ils sont très dynamiques dans la membrane. Au sein des épines dendritiques, ils peuvent se déplacer par traffic membranaire entre les compartiments intracellulaires et la membrane plasmique. Une fois à la surface, ils se déplacent par diffusion latérale et peuvent s'ancrer réversiblement avec des protéines de la densité postsynaptique ou retourner dans des compartiments endocytaires. Les oligomères Aß augmentent l'endocytose des récepteurs AMPAR, diminuent la densité des épines dendritique et provoquent des défaillances globales dans la transmission synaptique excitatrice. Ces effets, sont englobés dans le terme "synaptotoxicité des oligomères Aß" et sont un domaine principal d'étude de l'étiologie de la maladie d'Alzheimer. Wnt5a un ligand Wnt endogène connu pour activer la voie non-canonique dans les neurones d'hippocampe, génère une augmentation des courants excitateurs et des aggrégats de PSD95 et protége les neurones contre la synaptotoxicité des oligomères Aβ. Compte tenu du fait que Wnt5a semble contrecarrer les effets nocifs causés par les oligomères Aß, nous avons procédé à l'étude du mécanisme par lequel Wnt5a protège de la synaptotoxicité des oligomères Aβ. Cela nous a conduit à évaluer l'effet de Wnt5a sur l'un des facteurs dans la transmission glutamatergique, la dynamique des récepteurs AMPAR. En utilisant la microscopie à super-résolution dans les neurones d'hippocampe vivants et fixés, nous avons trouvé que Wnt5a module la dynamique et la localisation des récepteurs AMPAR. Plus précisément, Wnt5a stabilise les récepteurs AMPAR dans les sites synaptiques et extrasynaptiques. Ceci est corrélé avec une augmentation de la co-localisation et de l'interaction entre GluA2 et PSD95. Ces effets ne sont exercés que par l'activation non-canonique de la signalisation Wnt, à travers le ligand Wnt5a et non par les effets canoniques de Wnt7a. De manière intéressante, la pré-incubation de Wnt5a prévient la toxicité des oligomères Aß et maintient la dynamique basale des récepteurs AMPAR. Nos données suggèrent que Wnt5a empêche les effets des oligomères Aβ en favorisant leur stabilisation dans les sites synaptiques. / AMPARs (AMPARs) are responsible for most fast excitatory synaptic transmission in the central nervous system, including hippocampal neurons studied here. AMPARs are highly dynamic in the plasma membrane. Within dendritic spines, they move by membrane trafficking between intracellular compartments and the plasma membrane. Once at the surface, they move through lateral brownian diffusion and can reversibly anchor to postsynaptic density proteins or return to endocytic compartments. Aβ oligomers increase endocytosis of AMPARs, diminish dendritic spine density and cause overall failures in excitatory transmission. These effects, among others, are englobed in the term “Aβ oligomers synaptotoxicity” and are a main focus on the study of Alzheimers disease ethiology. On the contrary, Wnt5a - an endogenous Wnt ligand known to activate the non-canonical pathway in hippocampal neurons - generates an increase in excitatory currents and in clusters of PSD95 and protects neurons against Aβ oligomers synaptotoxicity. Given the fact that Wnt5a seems to counteract the distresses caused by Aβ oligomers, we proceeded to study the mechanism through which Wnt5a protects from Aβ oligomers synaptotoxicity. This led us to evaluate the effect of Wnt5a on one of the important factors in glutamatergic transmission, i.e. AMPAR receptor dynamics. By using super-resolution microscopy in live and fixed hippocampal neurons, we found that Wnt5a modulates the dynamic and localization of AMPARs. Specifically, Wnt5a stabilizes AMPARs in synaptic and extrasynaptic sites. This correlates with an increase in co-localization and interaction between GluA2 and PSD95. These effects are exerted only by non-canonical activation of Wnt signaling, through Wnt5a ligand and not by the canonical effects of Wnt7a. Interestingly, pre-incubation of Wnt5a prevents toxicity of Aβ oligomers and maintains basal AMPARs dynamics. Our data suggest that Wnt5a prevents Aβ oligomers effects by promoting their stabilization in synaptic sites. / Los receptores AMPA (AMPARs) son los principales responsables de la respuesta excitatoria rápida en el sistema nervioso central, incluyendo neuronas hipocampales, estudiadas en esta tesis. A diferencia de otros receptores glutamatérgicos, los AMPARs son altamente dinámicos. Dentro de las espinas dendríticas, se pueden mover hacia y desde compartimentos endocíticos y hacia la membrana plasmática. Una vez en la superficie, a través de difusión lateral, se pueden anclar a proteínas de la densidad postsináptica o regresar a compartimentos endocíticos. Por otro lado, los oligómeros Aβ (oAβ) aumentan la endocitosis de AMPARs, disminuyen la densidad de espinas dendríticas y causan una falla generalizada de la transmisión sináptica excitatoria. Estos efectos, entre otros, se engloban en el término “sinaptotoxicidad por oAβ” y es uno de los principales puntos de estudio en la etiología de la enfermedad de Alzheimer. Al contrario, Wnt5a un ligando endógeno conocido por activar la vía no canónica en neuronas hipocampales, genera un aumento en corrientes excitatorias y en los clusters de PSD95 y protege a las neuronas contra la sinaptotoxicidad causada por oAβ. Debido a esto, procedimos a estudiar el mecanismo por el cual Wnt5a protege de la sinaptotoxicidad causada por Aβ. Esto nos llevó a evaluar los efectos de Wnt5a en uno de los principales factores en la transmisión glutamatérgica, la dinámica de los AMPARs. Con el uso de microscopía de super-resolución en neuronas hipocampales vivas, encontramos que Wnt5a modula la dinámica y localización de los AMPARs. Específicamente, Wnt5a estabiliza los AMPARs en espinas y dendritas. Lo cual se correlaciona con un aumento en la co-localización e interacción entre GluA2 y PSD95. Estos efectos son causados únicamente por la activación no-canónica de la vía Wnt, a través del ligando Wnt5a y no por los efectos canónicos de Wnt7a. De manera interesante, la pre-incubación de Wnt5a previene la toxicicidad de los oligómeros Aβ y mantiene la dinámica basal de los AMPARs. Esta data sugiere que Wnt5a promueve la estabilización de AMPARs, previniendo los efectos synaptotóxicos de los oAβ .
26

Circuit refinement in mouse visual cortex during development

Wong, Man Ho 04 August 2017 (has links)
No description available.
27

Etude de la régulation glutamate dépendante de la mobilité des récepteurs AMPA et de son rôle physiologique / Study of the glutamate dependant regulation of AMPA receptor mobility and of its physiological role

Constals, Audrey 23 October 2013 (has links)
Les récepteurs AMPA (rAMPA) sont les récepteurs ionotropiques du glutamate responsables de la majeure partie des courants excitateurs rapides dans la transmission synaptique rapide. Lors de la libération de glutamate, le rAMPA passe par 3 états conformationnels majoritaires : pore fermé/agoniste non lié, pore ouvert/agoniste lié et pore fermé/agoniste lié. Le contrôle du nombre et de l’organisation dans la synapse des rAMPA, via une combinaison de diffusion latérale et d’endo/exocytose, est essentiel à la régulation de l’intensité de la transmission synaptique. Les interactions existant entre les protéines de la densité post-synaptique et les protéines partenaires des récepteurs régulent la diffusion des récepteurs, contrôlant leur nombre et leur organisation à la post-synapse. Mon travail de thèse a consisté à étudier l’impact de l’activation des rAMPA sur leur mobilité et leur organisation à la post-synapse. En effet, la fixation de glutamate sur les récepteurs ainsi que leur désensibilisation entraînent des modifications structurales majeures affectant leurs interactions avec les protéines d’échafaudage et les protéines accessoires. L’impact de telles modifications sur les propriétés de diffusion et sur l’organisation sub-synaptique de ces rAMPA était jusqu’à présent inconnu. Mes travaux démontrent une mobilisation des rAMPA synaptiques consécutivement à leur activation par le glutamate. A l’échelle moléculaire, je propose que le passage de l’état activé à l’état désensibilisé des rAMPA entraîne un changement d’affinité de ces derniers pour une de leur protéine partenaire : la Stargazin. Cette régulation glutamate dépendante de la diffusion des rAMPA participe au maintien de la fidélité de la transmission synaptique rapide. / AMPA receptors (AMPAR) are ionotropic glutamate receptors which are responsible for the vast majority of fast excitatory synaptic currents in fast transmission. Upon release of glutamate, AMPAR undergo three main conformational states: pore closed/agonist unbound, pore open/agonist bound and pore closed/agonist bound. Controlling the number of AMPAR and their organization in the synapse, through a combination of lateral diffusion and endo/exocytosis, is essential to regulate the intensity of synaptic transmission. The interactions between proteins of the post-synaptic density and accessory receptor proteins regulate the distribution of receptors, controlling their number and organization in the post-synapse. During my PhD, I studied the impact of AMPAR activation on their mobility and organization in the post-synapse. Indeed, the binding of glutamate to AMPAR and their following desensitization lead to major structural changes on the receptor which impacts on their interactions with scaffolding proteins and accessory proteins. The impact of such modifications on the lateral diffusion and sub-synaptic organization of AMPAR was not known yet. My findings show a mobilization of synaptic AMPAR following their activation by glutamate. At the molecular level, I suggest that the transition from the activated state to the desensitized state of AMPAR leads to a change in affinity of the receptor for their partner protein: Stargazin. This glutamate dependent regulation of AMPAR diffusion participates in maintaining the fidelity of fast synaptic transmission.
28

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
29

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
30

Recognition of basic sorting motifs within synaptic membrane cargo proteins by the clathrin-adaptor complex AP-2 / Die Erkennung basischer Sortierungsmotive in synaptischen Membranproteinen durch den Clathrin-Adaptor-Komplex AP-2

Kastning, Kathrin 29 June 2005 (has links)
No description available.

Page generated in 0.0473 seconds