• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 9
  • 9
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of prenatal stress exposure on cognitive function in later life in rats

Lai, Yu-Ting January 2016 (has links)
Prenatal stress exposure (PNS) has detrimental effects on the offspring’s brain and behaviour and has been identified as an etiological factor in inducing cognitive function deficits in rodents and humans. The neural mechanisms are unclear, however reprogramming of the neuroendocrine stress axis, the hypothalamo-pituitary- adrenal (HPA) axis is hypothesised. A psychosocial stressor (residentintruder paradigm) was used to generate PNS rat offspring, making these studies clinically compatible. The hippocampus and the medial prefrontal cortex (mPFC) are critical in regulating cognitive function and also contribute to the negative feedback control of the HPA axis via corticosteroid receptors, including the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). Here the Barnes maze was used to assess spatial learning and memory in male and female PNS offspring during adulthood under different scenarios, including basal and acute and chronic stress conditions. Under basal conditions, PNS was associated with reduced GR and MR mRNA expression in the medial prefrontal cortex (mPFC) and the hippocampus, respectively; suggesting inhibitory feedback control of the HPA axis may be compromised in PNS rats. Moreover, impaired spatial learning was observed in male PNS rats following acute restraint stress. Bilateral lesions of the prelimbic cortex and central administration of an MR antagonist in control rats suggested acute stress-induced learning deficits in PNS males were a result of impaired hippocampus-mediated inhibitory feedback control of the HPA axis. Conversely, a one-week variable stress regimen facilitated spatial learning in PNS rats and this was associated with elevated MR mRNA expression in the dentate gyrus. Moreover, facilitated learning in the PNS rats exposed to chronic stress could be blocked by central administration of an MR antagonist, indicating a facilitatory role of hippocampal MR in spatial learning. In summary, opposite effects of PNS on spatial learning were observed under acute and chronic stress conditions, in which hippocampal MR played a key role in regulating behavioural performance. The effect of age was also examined in PNS rats, and the findings from middle-aged (10-11 months old) rats indicated PNS may accelerate cognitive decline. Sex differences were also studied, with control females’ out-performing males under basal conditions in terms of spatial learning and behavioural flexibility; however following prenatal or chronic stress these sex differences were no longer detected. Furthermore, acute stress impaired spatial learning to a greater extent in females, and this might be attributed to greater HPA axis responses to stress in females compared with males. In conclusion, prenatal stress alters later cognitive performance, in a sex- and stress context-dependent manner. Hippocampal MR plays a critical role in mediating spatial learning, particularly during stress conditions.
2

Age sensitivity of the Barnes Maze and the Morris Water Maze: Associations with cerebellar cortical Purkinje neurons

Kennard, John Andrew January 2012 (has links)
The goal of this study was to examine age-related changes in spatial memory and its neurobiological substrates as assessed by the Morris water maze (MWM) and the Barnes maze. The MWM is one of the most widely used tests of spatial memory and numerous studies suggest that spatial memory abilities decline with age. To contrast, very few studies exist comparing different ages of mice in the less stressful Barnes maze, and no systematic life span analysis of performance has been published. As the cerebellum is one brain structure that undergoes a quantifiable change in anatomy across the life span (loss of Purkinje neurons), this study evaluated these behavioral tests in terms of sensitivity to both age-related changes in learning as well as age-related changes in the cerebellar cortex. A total of 65 CB6F1 mice were tested at one of five ages (4, 8, 12, 18, or 25 months) on the MWM and Barnes maze. Deficits in spatial memory acquisition were most apparent in both tasks when comparing a subset of good learning mice. Impairment began at 25 months in the MWM and 18 months in the Barnes maze. In all mice, retention was impaired at 25 months on the Barnes maze, but no clear retention deficits were found in the MWM. Unbiased stereology revealed an age-related loss in cerebellar cortical Purkinje neurons from 12-25 months, whereas hippocampus volume remained stable across the life span. Purkinje neuron number, but not hippocampus volume, was correlated with spatial learning in the Barnes maze, with impaired learning associated with lower neuron numbers. For the MWM, Purkinje neuron number was associated with performance in a subset of good learning animals. Overall, mice that learned the Barnes maze well had more Purkinje neurons than poor learners. Both tests were sensitive to heterogeneity in aging at each age tested. Comparisons of good and poor learners across the life span, as well as correlations between the two tasks and brain measures, suggested that the MWM and Barnes maze may be sensitive to different spatial learning abilities and mechanisms of aging. / Psychology
3

The MK2 cascade regulates mGluR-dependent synaptic plasticity and reversal learning

Privitera, Lucia, Hogg, Ellen L., Gaestel, M., Wall, M.J., Corrêa, Sonia A.L. 23 May 2019 (has links)
Yes / The ability to either erase or update the memories of a previously learned spatial task is an essential process that is required to modify behaviour in a changing environment. Current evidence suggests that the neural representation of such cognitive flexibility involves the balancing of synaptic potentiation (acquisition of memories) with synaptic depression (modulation and updating previously acquired memories). Here we demonstrate that the p38 MAPK/MAPK-activated protein kinase 2 (MK2) cascade is required to maintain the precise tuning of long-term potentiation and long-term depression at CA1 synapses of the hippocampus which is correlated with efficient reversal learning. Using the MK2 knockout (KO) mouse, we show that mGluR-LTD, but not NMDAR-LTD, is markedly impaired in mice aged between 4 and 5 weeks (juvenile) to 7 months (mature adult). Although the amplitude of LTP was the same as in wildtype mice, priming of LTP by the activation of group I metabotropic receptors was impaired in MK2 KO mice. Consistent with unaltered LTP amplitude and compromised mGluR-LTD, MK2 KO mice had intact spatial learning when performing the Barnes maze task, but showed specific deficits in selecting the most efficient combination of search strategies to perform the task reversal. Findings from this study suggest that the mGluR-p38-MK2 cascade is important for cognitive flexibility by regulating LTD amplitude and the priming of LTP. / Professor Richard Greene at the University of Bradford - startup fund to setup electrophysiological facility and Wellcome Trust 200646/Z/16/Z to S.A.L.C.
4

Endocannabinoid Modulation of Spatial Memory in Aversively and Appetitively Motivated Barnes Maze Tasks

Harloe, John Pinckney 01 January 2008 (has links)
Genetic deletion or pharmacological blockade of the CB1 receptor has been reported to impair extinction learning in aversive conditioning (i.e., conditioned fear and Morris water maze) paradigms, but not in operant procedures in which food reinforcement is earned. It is difficult to discern whether the differential effects caused by CB1 receptor disruption on extinction result from the hedonics (i.e., aversive vs. appetitive) or is related to the required responses associated with these disparate tasks. In order to evaluate whether the hedonics is the determining factor, we used either aversive (i.e., escape from bright lights and air turbulence) or appetitive (i.e., to gain access to water) motivators in the Barnes maze task, a model in which mice are required to enter a hidden goal box. Administration of the CB1 receptor antagonist, rimonabant, disrupted extinction learning under aversive conditions, but not under appetitive conditions. This is the first study to show a differential effect of rimonabant on extinction in a task that required identical motor behaviors, but only differed in hedonic nature of the reinforcer. In addition, genetic ablation of CB1 receptor signaling impaired acquisition of the task under both aversive and appetitive conditioning procedures. Conversely, enhancing endocannabinoid signaling, via genetic deletion of the FAAH enzyme, accelerated acquisition of the task under aversive, but not appetitive, conditioning procedures. Accordingly, these data strongly support the hypothesis that the endogenous cannabinoid system plays a necessary role in the extinction of aversively motivated behaviors, but is expendable in appetitively motivated behaviors. While these findings underscore concerns over potential side effects associated with CB1 receptor antagonists, they also suggest that stimulating the endogenous cannabinoid system may be a promising pharmacological approach to treat maladaptive behaviors that arise from stress or trauma.
5

O envolvimento de proteínas quinases na facilitação do aprendizado espacial induzido por creatina / The involvement of protein kinases on spatial learning enhancement induced by creatine

Souza, Mauren Assis de 20 November 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Decline cognitive related to neurodegenerative diseases are very commom in patients, probably in function of aging. Since there are few effectives therapeutics approaches to loss memory treatment, but studies about new therapeutics approaches are necessary regarding neuroprotective drugs. Thus, recent works have been showing the efficacy of some neuroprotective compounds like creatine (Cr) in treatment of patients and experimental models with memory defcit. Creatine is a guanidine compound synthesized from glycine, arginine and S-adenosylmethionine in the kidneys, liver and brain that have been presented neuroprotective and neuromodulatory effect in the central nervous systems. Some works suggest that guanidine compounds like Cr could enhance learning by modulation polyamines binding sites at the N-methyl-D-Aspartate (NMDA) receptor and act as energetic buffer intracellular. In these context, the propose of this work was investigate the involvement of Cr transporter (CreaT), cAMP-dependent protein kinase A (PKA) and Ca2+/ calmodulin-dependent protein kinase II (CaMKII) signaling pathway in the spatial learning after intrahippocampal injection of Cr. After training on Barnes Maze, Cr and/or 3-GPA (inhibitor CreaT), Cr and/or H-89 (PKA inhibitor), Cr and/or STO-609, (inhibitor of CaMKII) bilateral intrahipocappus administration was performed. The results showed that intrahippocampal administration of 3-GPA, H-89 and STO-609 attenuated the facilitatory effect of Cr on spatial learnig performed on barnes Maze. Therefore, we decide investigate the involvement of the PKA (pPKA), CaMKII (pCaMKII) and CREB (pCREB) activation after intrahippocampus creatine administration in rats trained on Barnes Maze. The results showed that Cr enhanced pCREB levels and pCaMKII levels. Thirty minutes after creatine administration was observed pCREB an pCaMKII levels enhancement, on the other hand, pPKA levels enhancement was not observed. These data suggest that spatial learning enhancement elicited by Cr may be mediated by trans-cellular creatine transports, as well, CaMKII/CREB intracellular pathway in rat hippocampus / O declínio cognitivo associado a doenças neurodegenerativas é um sintoma cada vez mais comum encontrado em pacientes, provavelmente devido ao aumento da expectativa de vida da população. Dada a escassez de medidas terapêuticas efetivas para o déficit de memória apresentado por pacientes, evidencia-se a importância da busca de novos compostos e do estudo de seus mecanismos de ação. Nesse contexto, recentes estudos mostraram a eficácia de algumas substâncias com ação neuroprotetora, como a creatina (Cr), na terapia de pacientes com déficit de memória e em modelos experimentais. A Cr é um composto guanidínico sintetizado endogenamente nos rins, fígado, pâncreas e cérebro, que apresenta ação neuroprotetora e neuromoduladora no sistema nervoso central. Estudos mostram que a administração de compostos guanidínicos, como a Cr, podem estar relacionados com a melhora da memória devido à interação com o sítio das poliaminas no receptor N-metil-D-Aspartato (NMDA) e por atuar como tampão energético intracelular. Neste contexto, o objetivo deste estudo foi investigar o envolvimento do transportador de Cr (CreaT), das proteínas quinases dependente de AMPc (PKA) e dependente de Ca2+/calmodulina II (CaMKII) na melhora do aprendizado espacial induzido por Cr no hipocampo de ratos. Após o treino no labirinto de Barnes, os ratos foram injetados no hipocampo, bilateralmente, com Cr e/ou 3-ácido guanidinico propiônico (3-GPA, um inibidor do transportador de creatina); Cr e/ou [N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide, Di-HCl Salt] (H-89, um inibidor da PKA); Cr e/ou 1,8-Naphthoylene benzimidazole-3- carboxylic acid (STO-609, um inibidor da CaMKII). A administração de 3-GPA, H-89 e STO-609 diminuiu o efeito facilitatório da Cr na memória espacial de ratos, observado no teste do labirinto de Barnes. De acordo com esses resultados, decidimos investigar o envolvimento da ativação do elemento de ligação responsivo ao AMPc (pCREB), PKA (pPKA) e CaMKII (pCaMKII) após a administração de Cr no hipocampo de animais treinados no labirinto de Barnes. Trinta minutos após a injeção de Cr, foi observado um aumento nos níveis de pCREB e pCaMKII, mas não nos níveis de pPKA no hipocampo de ratos. Estes achados sugerem que a facilitação do aprendizado espacial induzido pela Cr depende do seu transporte para o meio intracelular, assim como, envolve a via de sinalização celular da CaMKII/CREB no hipocampo de ratos.
6

A neural mechanism of observational learning in rats using Barnes maze / バーンズ迷路を用いたラットの他個体観察学習の神経メカニズム / バーンズ メイロ オ モチイタ ラット ノ タコタイ カンサツ ガクシュウ ノ シンケイ メカニズム

山田 基樹, Motoki Yamada 22 March 2021 (has links)
博士(理学) / Doctor of Philosophy in Science / 同志社大学 / Doshisha University
7

The temporal dynamics of Arc expression regulate cognitive flexibility

Wall, M.J., Collins, D.R., Chery, S.L., Allen, Z.D., Pastuzyn, E.D., George, A.J., Nikolova, V.D., Moy, S.S., Philpot, B.D., Shepherd, J.D., Muller, Jurgen, Ehlers, M.D., Mabb, A.M., Corrêa, Sonia A.L. 31 May 2018 (has links)
Yes / Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasomedependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. / Open access funded by Biotechnology and Biological Sciences Research Council
8

Growth hormone in the brain : Focus on cognitive function

Brolin, Erika January 2017 (has links)
Cognitive impairments are an increasing health problem worldwide. In the developed countries, the average life expectancy has dramatically increased over the last decades, and with an elderly population more cases of cognitive impairments appear. Age, genetics, and different medical conditions such as diabetes mellitus, and substance use disorders may all contribute to declined cognitive ability. Physiological functions also decrease with increasing age, as does the activity of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. Interestingly, both GH and IGF-1 are recognized for their neuroprotective effects and cognitive enhancement. The overall aim of this thesis was to investigate the impact of the somatotrophic axis (i.e. GH/IGF-1 axis) in rodents with cognitive deficiencies induced by diabetes or long-term drug exposure. For the first time cognitive impairments were characterized in diabetic mice using a spatial learning and memory task called the Barnes maze (BM). In diabetic mice, impaired learning in the BM was associated with decreased expression of the GH receptor (GHR) in the frontal cortex, a region important for e.g. working memory. Treatment with GH reversed certain cognitive impairments seen in diabetic animals. In rats treated with gamma-hydroxybutyrate (GHB), a significant decrease of Igf1 mRNA expression in the frontal cortex was observed. This observation may explain the impaired cognitive function previously seen following GHB administration. Furthermore, rats exposed to chronic morphine delivered in mini-osmotic pumps displayed memory impairments in the Morris water maze (MWM), an effect that seems to be associated with the composition of the N-methyl-d-aspartate (NMDA) receptor complex in the frontal cortex. In conclusion, the result strengthens the evidence for GH being a cognitive enhancer. Moreover, the result within this thesis identifies the frontal cortex as an important brain region, where gene expression related to the somatotrophic system is affected in rodents with cognitive impairments. The thesis especially emphasizes the importance of the local somatotrophic system in the brain with regard to cognitive function.
9

O papel da enzima Na+,K+-ATPase no déficit cognitivo e no efeito profilático induzido pelo exercício físico após o Traumatismo Crânio-Encefálico / The role of Na+,K+-ATPase enzyme on cognitive deficit and in the prophylactic effect induced by exercise after Traumatic Brain Injury

Lima, Frederico Diniz 17 September 2009 (has links)
Traumatic Brain Injury (TBI) is the major cause of death or cognitive deficits in industrialized countries. Although studies have indicate that the oxidative stress and functional deficits after TBI are connected events, the mechanisms that outline the development of these cognitive deficits are, still, limited. In this context, we investigated the involvement of oxidative stress markers (thiobarbituric acid reactive species; TBARS and protein carbonylation) and the Na+,K+-ATPase enzyme activity on the spatial learning after one and three months from a fluid percussion injury (FPI) in rats. The results revealed that FPI increase the latency of escape and the number of the errors on the Barnes Maze Test one and three months after FPI. We also found an increase of TBARS and protein carbonylation in parietal cortex after one and three months FPI. In addition, statistical analysis revealed a decrease of the Na+,K+- ATPase enzyme activity in the parietal cortex after FPI (time-dependent). These results suggest that cognitive impairment following FPI may result, at least in part, from increase of two oxidative stress markers, protein carbonylation and TBARS that occurs concomitantly to a decrease in Na+,K+-ATPase activity. Physical exercise, despite the involvement on the generation of the reactive oxygen species (ROS), is used on the rehabilitation of TBI. However, although the favorable effects of physical exercise on traumatic brain injury (TBI) patients is well known, the specific mechanisms involved in this protection after TBI has been limited. Thus, we investigated whether physical training protects against oxidative damage (measured by protein carbonylation and TBARS) and neurochemical alterations represented by immunodetection of alpha subunit and activity of Na+,K+-ATPase after FPI in cerebral cortex of rats. The results revealed that physical training protected against oxidative damage induced by FPI. In addition, physical training was effective against Na+,K+- ATPase enzyme activity inhibition and α subunit level decrease after FPI. The Pearson correlation showed that the decrease of the catalytical levels of the Na+,K+- ATPase enzyme α subunit is related with the increasing on oxidative stress markers. Moreover, the physical activity-related protection against free radicals induced by FPI links with maintenance of α subunit immunocontent. These results suggest that the effective protection stimulated by physical exercise on the neuronal damage induced by TBI has connection with the protection of the specific targets from the free radicals action, like Na+,K+-ATPase enzyme. / O Traumatismo crânio-encefálico (TCE) é uma das maiores causas de morte ou déficits cognitivos nos países industrializados. Apesar de os estudos indicarem que o estresse oxidativo e os déficits funcionais que ocorrem após TCE serem eventos interrelacionados, os mecanismos que delineiam o desenvolvimento destes déficits cognitivos são, ainda, limitados. Neste contexto nós investigamos o envolvimento de marcadores de estresse oxidativo (espécies reativas ao ácido tiobarbitúrico; TBARS e carbonilação protéica) e a atividade da enzima Na+,K+-ATPase no aprendizado espacial um e três meses após um dano de percussão por fluído (FPI) em ratos. Os resultados revelaram que o FPI aumentou o tempo de latência e o número de erros no teste do labirinto de Barnes em um e três meses após FPI. Também encontramos aumento no conteúdo de TBARS e proteína carbonil no córtex parietal em um e três meses após FPI. Além disso, a análise estatística revelou uma diminuição na atividade da enzima Na+,K+-ATPase no córtex cerebral após FPI tempo dependente, sugerindo que o déficit cognitivo induzido pelo FPI se deva pela perda de funcionabilidade de enzimas presentes na células como Na+,K+-ATPase. Perda esta induzida pelo aumento na geração de radicais livres após TCE. Apesar de estar envolvido no aumento da produção de espécies reativas ao Oxigênio (ERO), exercício físico tem sido utilizado na reabilitação de após TCE. Por outro lado, ainda são escassos na literatura estudos que evidenciam a especificidade dos mecanismos envolvidos na proteção induzida pelo exercício físico após TCE. Desta forma, investigamos se o treinamento físico protege contra o dano oxidativo bem como das alterações neuroquímicas representadas pela imunodetecção da subunidade α e da atividade da enzima Na+,K+-ATPase no córtex cerebral de ratos. Os resultados revelaram que o treinamento físico protegeu contra o dano oxidativo induzido por FPI. Além disso, o treinamento físico foi efetivo contra a inibição da enzima Na+,K+-ATPase e a diminuição dos níveis da sua subunidade α após FPI. A correlação de Pearson revelou que a diminuição dos níveis catalíticos da subunidade α da enzima Na+,K+-ATPase se correlaciona com o aumento dos marcadores de estresse oxidativo. Além disso, a proteção exercida pela atividade física contra os radicais livres induzidos por FPI tem relação com a manutenção do imunoconteúdo da subunidade α. A partir destes achados, sugere-se que a efetiva proteção exercida pelo exercício físico no dano neuronal causado induzido pelo TCE se deva pela proteção de alvos específicos a ação de radicais livres, como a enzima Na+, K+-ATPase.

Page generated in 0.0483 seconds