• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 13
  • 13
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insulin-induced Suppression of A-type GABA Receptor Signaling in the INS-1 Pancreatic β-cell Line

Bansal, Pritpal 14 December 2010 (has links)
GABA and GABA type A receptor (GABAAR) are expressed in pancreatic β-cells and comprise an autocrine signaling system. How the GABA-GABAAR system is regulated is unknown. In this study, I investigated insulin’s effect on this system in the INS-1 β-cell line. I found that GABA evoked current (IGABA) in INS-1 cells, resulting in membrane depolarization. Perforated-patch recordings showed that pre-treatment of insulin or zinc-free insulin suppressed IGABA in INS-1 cells (p < 0.01). Radioimmunossay showed that GABA (30 μM) increased C-peptide secretion from INS-1 cells, which was blocked by GABAAR antagonist picrotoxin, indicating that GABA increased insulin secretion through activation of GABAAR. However, insulin significantly reduced the stimulatory effect of GABA on C-peptide secretion (p < 0.05). These data suggest that GABA released from β-cells positively regulates insulin secretion via GABAAR activation, and that insulin negatively regulates the β-cell secretory pathway likely via inhibiting the GABA-GABAAR system in β-cells.
2

Insulin-induced Suppression of A-type GABA Receptor Signaling in the INS-1 Pancreatic β-cell Line

Bansal, Pritpal 14 December 2010 (has links)
GABA and GABA type A receptor (GABAAR) are expressed in pancreatic β-cells and comprise an autocrine signaling system. How the GABA-GABAAR system is regulated is unknown. In this study, I investigated insulin’s effect on this system in the INS-1 β-cell line. I found that GABA evoked current (IGABA) in INS-1 cells, resulting in membrane depolarization. Perforated-patch recordings showed that pre-treatment of insulin or zinc-free insulin suppressed IGABA in INS-1 cells (p < 0.01). Radioimmunossay showed that GABA (30 μM) increased C-peptide secretion from INS-1 cells, which was blocked by GABAAR antagonist picrotoxin, indicating that GABA increased insulin secretion through activation of GABAAR. However, insulin significantly reduced the stimulatory effect of GABA on C-peptide secretion (p < 0.05). These data suggest that GABA released from β-cells positively regulates insulin secretion via GABAAR activation, and that insulin negatively regulates the β-cell secretory pathway likely via inhibiting the GABA-GABAAR system in β-cells.
3

The role of L-type voltage-gated calcium channels in hippocampal CA1 neuron glutamate and GABA-A receptor-mediated synaptic plasticity following chronic benzodiazepine administration

Xiang, Kun 13 June 2007 (has links)
No description available.
4

Normal [<sup>3</sup>H]Flunitrazepam Binding to GABA<sub>a</sub> Receptors in the Locus Coeruleus in Major Depression and Suicide

Zhu, He, Karolewicz, Beat, Nail, Emily, Stockmeier, Craig A., Szebeni, Katalin, Ordway, Gregory A. 13 December 2006 (has links)
Major depression and suicide are associated with altered concentrations of specific noradrenergic proteins in the human locus coeruleus (LC). Based on experimental studies that can reproduce these LC abnormalities in laboratory animals, we hypothesized that noradrenergic pathobiology in depression is a result of overactivity of the LC. LC activity is under the control of both excitatory and inhibitory inputs. A major inhibitory input to the LC is GABAergic, arising from the nucleus prepositus hypoglossi. Numerous studies demonstrating low levels of GABA in the CSF and plasma of subjects with major depressive disorder (MDD) raise the possibility that LC overactivity in depression may be secondary to reduced GABAergic input to the LC. Here, GABAergic input to the LC in depression was evaluated by studying the binding of [ H]flunitrazepam to GABA receptors at three anatomically defined levels of the human postmortem LC. LC tissues were collected from subjects with MDD, subjects with depressive disorders including MDD that died as a result of suicide, and psychiatrically normal control subjects. A modest rostral-caudal gradient of GABA receptor binding density was observed among all subjects. No significant differences in the amount of binding to GABA receptors were observed between control subjects (n = 21) and MDD subjects (n = 9) or depressed suicide victims (n = 17). These results demonstrate that GABA receptor binding in the LC measured with [ H]flunitrazepam is not altered in subjects with depressive illnesses.
5

Antinociceptive Effects of H<sub>3</sub> (R-methylhistamine) and GABA <sub>B</sub> (baclofen)-Receptor Ligands in an Orofacial Model of Pain in Rats

Nowak, Przemysław, Kowalińska-Kania, Magdalena, Nowak, Damian, Kostrzewa, Richard M., Malinowska-Borowska, Jolanta 01 August 2013 (has links)
The present study explored the antinociceptive effects of H3 (R-alpha-methylhistamine) and GABAB (baclofen) receptor ligands in an orofacial model of pain in rats. Orofacial pain was induced by subcutaneous injection of formalin (50 μl, 5 %) in the upper lip region, and the number of jumps and time spent face rubbing was recorded for 40 min. Formalin produced a marked biphasic pain response; first phase, 0-10 min (jumps), and second phase, 15-40 min, (rubbing). Baclofen (50 μg) injected into the rat wiskerpad 5 min before formalin administration suppressed both phases of pain whereas R-alpha-methylhistamine (12.5 μg) abolished the first phase only. Brains were taken immediately after behavioral testing was completed. HPLC/ED analysis showed that 5-hydroxytryptamine (5-HT) turnover was increased in hippocampus, thalamus, and brain stem of all formalin groups, excepting the baclofen group in which the balance of 5-HT metabolism was restored to control values. These findings demonstrate that GABAB receptors represent peripheral targets for analgesia. Consequently, locally administered baclofen may be a useful approach in treating inflammatory trigeminal pain.
6

Antinociceptive Effects of H<sub>3</sub> (R-methylhistamine) and GABA <sub>B</sub> (baclofen)-Receptor Ligands in an Orofacial Model of Pain in Rats

Nowak, Przemysław, Kowalińska-Kania, Magdalena, Nowak, Damian, Kostrzewa, Richard M., Malinowska-Borowska, Jolanta 01 August 2013 (has links)
The present study explored the antinociceptive effects of H3 (R-alpha-methylhistamine) and GABAB (baclofen) receptor ligands in an orofacial model of pain in rats. Orofacial pain was induced by subcutaneous injection of formalin (50 μl, 5 %) in the upper lip region, and the number of jumps and time spent face rubbing was recorded for 40 min. Formalin produced a marked biphasic pain response; first phase, 0-10 min (jumps), and second phase, 15-40 min, (rubbing). Baclofen (50 μg) injected into the rat wiskerpad 5 min before formalin administration suppressed both phases of pain whereas R-alpha-methylhistamine (12.5 μg) abolished the first phase only. Brains were taken immediately after behavioral testing was completed. HPLC/ED analysis showed that 5-hydroxytryptamine (5-HT) turnover was increased in hippocampus, thalamus, and brain stem of all formalin groups, excepting the baclofen group in which the balance of 5-HT metabolism was restored to control values. These findings demonstrate that GABAB receptors represent peripheral targets for analgesia. Consequently, locally administered baclofen may be a useful approach in treating inflammatory trigeminal pain.
7

GABA<sub>A</sub> Receptor Homeostasis at the <i>C. elegans</i> Neuromuscular Junction

Sujkowski, Alyson L. 09 September 2010 (has links)
No description available.
8

Genome-scale identification of cellular pathways required for cell surface recognition

Sharma, Sumana January 2018 (has links)
A range of biochemically diverse molecules located in the plasma membrane— such as proteins, glycans, and lipids—mediate cellular recognition events, initiation of signalling pathways, and the regulation of processes important for the normal development and function of multicellular organisms. Interactions mediated by cell surface receptors can be challenging to detect in biochemical assays, because they are often highly transient, and membrane-embedded receptors are difficult to solubilise in their native conformation. The biochemical features of low-affinity extracellular protein interactions have therefore necessitated the development of bespoke methods to detect them. Here, I develop a genome-scale cell-based genetic screening approach using CRISPR-Cas9 knockout technology that reveals cellular pathways required for specific cell surface recognition events. Using a panel of high-affinity monoclonal antibodies, I first establish a method from which I identify not only the direct receptor but also other required gene products, such as co-receptors, post-translational modi cations, and transcription factors contributing to antigen expression and subsequent antibody-antigen recognition on the surface of cells. I next adapt this method to identify cellular factors required for receptor interactions for a panel of recombinant proteins corresponding to the ectodomains of cell surface proteins to the endogenous surface receptors present on a range of cell lines. In addition to finding general cellular features recognised by many ectodomains, I also identify direct interaction partners of recombinant protein probes on cell surfaces together with intracellular genes required for such associations. Using this method, I identify IGF2R as a binding partner for the R2 subunit of GABAB receptors, providing a mechanism for the internalisation and regulation of GABAB receptor signalling. The results here demonstrate that this single approach can identify the molecular nature and cell biology of surface receptors without the need to make any prior assumptions regarding their biochemical properties.
9

Regulation of Neuronal L-type Voltage-Gated Calcium Channels by Flurazepam and Other Positive Allosteric GABA<sub>A</sub> Receptor Modulators

Earl, Damien E. 31 August 2011 (has links)
No description available.
10

Role of Neuroligins at the Inhibitory Postsynaptic Compartment of the Retina / Die Funktion der Neuroligine in hemmenden Postsynapsen der Retina

Hoon, Mrinalini 26 April 2010 (has links)
No description available.

Page generated in 0.0528 seconds